A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows ...A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.展开更多
We study the mathematical characteristics of the super-universal associated-Legendre polynomials arising from a kind of double ring-shaped potentials and obtain their polar angular wave functions with certain parity. ...We study the mathematical characteristics of the super-universal associated-Legendre polynomials arising from a kind of double ring-shaped potentials and obtain their polar angular wave functions with certain parity. We find that there exists the even or odd parity for the polar angular wave functions when the parameter η is taken to be positive integer, while there exist both even and odd parities when η is taken as positive non-integer real values. The relations among the super-universal associated-Legendre polynomials, the hypergeometric polynomials, and the Jacobi polynomials are also established.展开更多
In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. ...In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. The group-theoretical background with the 3-parameter group of motions M(2) in the plane for Bessel functions and of the Heisenberg-Weyl group W(2) for Parabolic Cylinder functions is discussed and compared with formulae, in particular, for the lowering and raising operators and the eigenvalue equations. Recurrence relations for the Associated Hermite polynomials and for their derivative and the differential equation for them are derived in detail. Explicit expressions for the Associated Hermite polynomials with involved Jacobi polynomials at argument zero are given and by means of them the Parabolic Cylinder functions are represented by two such basic functions.展开更多
After developing the mathematical means for the correspondence of classical phase-space function to quantum-mechanical operators with symmetrical ordering of the basic canonical operators in the sense of Weyl the appr...After developing the mathematical means for the correspondence of classical phase-space function to quantum-mechanical operators with symmetrical ordering of the basic canonical operators in the sense of Weyl the approach is applied to an infinite series of classical monomial functions of the canonical variables. These include as well as pure powers of the amplitude as also basic periodic functions of the phase φwith their quantum-mechanical correspondence. In the representation by number states, all the considered operators involve the Jacobi polynomials as the essential formative element. Whereas the quantity in normal ordering due to its indeterminacy leads to the introduction of the notions of sub- and super-Poissonian statistics the analogous quantity in (Weyl) symmetrical orderingis positive definite and satisfies an inequality. The notions of sub- and super-Poissonian statistics are problematic when they are used for the definition of nonclassicality of states since the mentioned measure in normal ordering does not determine the Poisson statistics in their middle in unique way but determines only a large set of statistics which may be very far in the sense of the Hilbert-Schmidt distance from a Poisson statistics that is discussed.展开更多
A new class of three-variable orthogonal polynomials, defined as eigenfunctions of a second order PDE operator, is studied. These polynomials are orthogonal over a curved tetrahedron region, which can be seen as a map...A new class of three-variable orthogonal polynomials, defined as eigenfunctions of a second order PDE operator, is studied. These polynomials are orthogonal over a curved tetrahedron region, which can be seen as a mapping from a traditional tetrahedron, and can be taken as an extension of the 2-D Steiner domain. The polynomials can be viewed as Jacobi polynomials on such a domain. Three-term relations are derived explicitly. The number of the individual terms, involved in the recurrences relations, are shown to be independent on the total degree of the polynomials. The numbers now are determined to be five and seven, with respect to two conjugate variables z, $ \bar z $ and a real variable r, respectively. Three examples are discussed in details, which can be regarded as the analogues of the Chebyshev polynomials of the first and the second kinds, and Legendre polynomials.展开更多
Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting proper...Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.展开更多
The bilinear generating function for products of two Laguerre 2D polynomials with different arguments is calculated. It corresponds to the formula of Mehler for the generating function of products of two Hermite polyn...The bilinear generating function for products of two Laguerre 2D polynomials with different arguments is calculated. It corresponds to the formula of Mehler for the generating function of products of two Hermite polynomials. Furthermore, the generating function for mixed products of Laguerre 2D and Hermite 2D polynomials and for products of two Hermite 2D polynomials is calculated. A set of infinite sums over products of two Laguerre 2D polynomials as intermediate step to the generating function for products of Laguerre 2D polynomials is evaluated but these sums possess also proper importance for calculations with Laguerre polynomials. With the technique of operator disentanglement some operator identities are derived in an appendix. They allow calculating convolutions of Gaussian functions combined with polynomials in one- and two-dimensional case and are applied to evaluate the discussed generating functions.展开更多
We complete and extend the asymptotic analysis of the spectrum of Jacobi Tau approximations that were first considered by Dubiner. The asymptotic formulas for Jacobi polynomials PN(α ,β ) ,α ,β > -1 are derived...We complete and extend the asymptotic analysis of the spectrum of Jacobi Tau approximations that were first considered by Dubiner. The asymptotic formulas for Jacobi polynomials PN(α ,β ) ,α ,β > -1 are derived and confirmed by numerical approximations. More accurate results for the slowest decaying mode are obtained. We explain where the large negative eigenvalues come from. Furthermore, we show that a large negative eigenvalue of order N2 appears for -1 1 . The eigenvalues for Legendre polynomials are directly related to the roots of the spherical Bessel and Hankel functions that are involved in solving Helmholtz equation inspherical coordinates.展开更多
The single neutral spin-half particle with electric dipole moment and magnetic dipole moment moving in an external electromagnetic field is studied. The Aharonov-Casher effect and He-McKellar-Wilkens effect are emphat...The single neutral spin-half particle with electric dipole moment and magnetic dipole moment moving in an external electromagnetic field is studied. The Aharonov-Casher effect and He-McKellar-Wilkens effect are emphatically discussed in noncommutative(NC) space with minimal length. The energy eigenvalues of the systems are obtained exactly in terms of the Jacobi polynomials. Additionally, a special case is discussed and the related energy spectra are plotted.展开更多
A necessary and sufficient condition of regularity of (0,1,…,m - 2,m) interpolation on the zeros of (1-x)P<sub>n-1</sub><sup>α,β</sup>(x) (α】 -1,β≥- 1) in a manageable form is es...A necessary and sufficient condition of regularity of (0,1,…,m - 2,m) interpolation on the zeros of (1-x)P<sub>n-1</sub><sup>α,β</sup>(x) (α】 -1,β≥- 1) in a manageable form is established, where P<sub>n-1</sub><sup>α,β</sup>(x) stands for the (n-1)th Jacobi polynomial. Meanwhile, the explicit representation of the fundamental polynomials when they exist, is given.展开更多
We shall study the differential equation y^l2=Tn(y)-(1-2μ2);where μ2 is a constant, Tn(x) are the Chebyshev polynomials with n = 3,4,6. The solutions of the differential equations will be expressed explicitly...We shall study the differential equation y^l2=Tn(y)-(1-2μ2);where μ2 is a constant, Tn(x) are the Chebyshev polynomials with n = 3,4,6. The solutions of the differential equations will be expressed explicitly in terms of the Weierstrass elliptic function which can be used to construct theories of elliptic functions based on 2F1 (1/4, 3/4; 1; z), 2F1 (l/3, 2/3; 1; z), 2F1 (1/6, 5/6; 1; z) and provide a unified approach to a set of identities of Rmanujan involving these hypergeometric functions.展开更多
Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a...Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a new and very effective method to determine the coefficients in the finite series ex-pansion that approximation f(t) in terms of Jacobi polynomials. Some numerical examples are illustrated.展开更多
For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential ...For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential equations of the second-order. So it is important to develop Asgeirsson mean value theorem. The mean value of solution for the higher order equation hay been discussed primarily and has no exact result at present. The mean value theorem for the higher order equation can be deduced and satisfied generalized biaxial symmetry potential equation by using the result of Asgeirsson mean value theorem and the properties of derivation and integration. Moreover, the mean value formula can be obtained by using the regular solutions of potential equation and the special properties of Jacobi polynomials. Its converse theorem is also proved. The obtained results make it possible to discuss on continuation of the solutions and well posed problem.展开更多
文摘A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.
基金Supported by the National Natural Science Foundation of China under Grant No.11275165partly by 20140772-SIP-IPN,Mexico
文摘We study the mathematical characteristics of the super-universal associated-Legendre polynomials arising from a kind of double ring-shaped potentials and obtain their polar angular wave functions with certain parity. We find that there exists the even or odd parity for the polar angular wave functions when the parameter η is taken to be positive integer, while there exist both even and odd parities when η is taken as positive non-integer real values. The relations among the super-universal associated-Legendre polynomials, the hypergeometric polynomials, and the Jacobi polynomials are also established.
文摘In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. The group-theoretical background with the 3-parameter group of motions M(2) in the plane for Bessel functions and of the Heisenberg-Weyl group W(2) for Parabolic Cylinder functions is discussed and compared with formulae, in particular, for the lowering and raising operators and the eigenvalue equations. Recurrence relations for the Associated Hermite polynomials and for their derivative and the differential equation for them are derived in detail. Explicit expressions for the Associated Hermite polynomials with involved Jacobi polynomials at argument zero are given and by means of them the Parabolic Cylinder functions are represented by two such basic functions.
文摘After developing the mathematical means for the correspondence of classical phase-space function to quantum-mechanical operators with symmetrical ordering of the basic canonical operators in the sense of Weyl the approach is applied to an infinite series of classical monomial functions of the canonical variables. These include as well as pure powers of the amplitude as also basic periodic functions of the phase φwith their quantum-mechanical correspondence. In the representation by number states, all the considered operators involve the Jacobi polynomials as the essential formative element. Whereas the quantity in normal ordering due to its indeterminacy leads to the introduction of the notions of sub- and super-Poissonian statistics the analogous quantity in (Weyl) symmetrical orderingis positive definite and satisfies an inequality. The notions of sub- and super-Poissonian statistics are problematic when they are used for the definition of nonclassicality of states since the mentioned measure in normal ordering does not determine the Poisson statistics in their middle in unique way but determines only a large set of statistics which may be very far in the sense of the Hilbert-Schmidt distance from a Poisson statistics that is discussed.
基金the Major Basic Project of China(Grant No.2005CB321702)the National Natural Science Foundation of China(Grant Nos.10431050,60573023)
文摘A new class of three-variable orthogonal polynomials, defined as eigenfunctions of a second order PDE operator, is studied. These polynomials are orthogonal over a curved tetrahedron region, which can be seen as a mapping from a traditional tetrahedron, and can be taken as an extension of the 2-D Steiner domain. The polynomials can be viewed as Jacobi polynomials on such a domain. Three-term relations are derived explicitly. The number of the individual terms, involved in the recurrences relations, are shown to be independent on the total degree of the polynomials. The numbers now are determined to be five and seven, with respect to two conjugate variables z, $ \bar z $ and a real variable r, respectively. Three examples are discussed in details, which can be regarded as the analogues of the Chebyshev polynomials of the first and the second kinds, and Legendre polynomials.
文摘Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.
文摘The bilinear generating function for products of two Laguerre 2D polynomials with different arguments is calculated. It corresponds to the formula of Mehler for the generating function of products of two Hermite polynomials. Furthermore, the generating function for mixed products of Laguerre 2D and Hermite 2D polynomials and for products of two Hermite 2D polynomials is calculated. A set of infinite sums over products of two Laguerre 2D polynomials as intermediate step to the generating function for products of Laguerre 2D polynomials is evaluated but these sums possess also proper importance for calculations with Laguerre polynomials. With the technique of operator disentanglement some operator identities are derived in an appendix. They allow calculating convolutions of Gaussian functions combined with polynomials in one- and two-dimensional case and are applied to evaluate the discussed generating functions.
文摘We complete and extend the asymptotic analysis of the spectrum of Jacobi Tau approximations that were first considered by Dubiner. The asymptotic formulas for Jacobi polynomials PN(α ,β ) ,α ,β > -1 are derived and confirmed by numerical approximations. More accurate results for the slowest decaying mode are obtained. We explain where the large negative eigenvalues come from. Furthermore, we show that a large negative eigenvalue of order N2 appears for -1 1 . The eigenvalues for Legendre polynomials are directly related to the roots of the spherical Bessel and Hankel functions that are involved in solving Helmholtz equation inspherical coordinates.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11465006 and 11565009
文摘The single neutral spin-half particle with electric dipole moment and magnetic dipole moment moving in an external electromagnetic field is studied. The Aharonov-Casher effect and He-McKellar-Wilkens effect are emphatically discussed in noncommutative(NC) space with minimal length. The energy eigenvalues of the systems are obtained exactly in terms of the Jacobi polynomials. Additionally, a special case is discussed and the related energy spectra are plotted.
文摘A necessary and sufficient condition of regularity of (0,1,…,m - 2,m) interpolation on the zeros of (1-x)P<sub>n-1</sub><sup>α,β</sup>(x) (α】 -1,β≥- 1) in a manageable form is established, where P<sub>n-1</sub><sup>α,β</sup>(x) stands for the (n-1)th Jacobi polynomial. Meanwhile, the explicit representation of the fundamental polynomials when they exist, is given.
文摘We shall study the differential equation y^l2=Tn(y)-(1-2μ2);where μ2 is a constant, Tn(x) are the Chebyshev polynomials with n = 3,4,6. The solutions of the differential equations will be expressed explicitly in terms of the Weierstrass elliptic function which can be used to construct theories of elliptic functions based on 2F1 (1/4, 3/4; 1; z), 2F1 (l/3, 2/3; 1; z), 2F1 (1/6, 5/6; 1; z) and provide a unified approach to a set of identities of Rmanujan involving these hypergeometric functions.
文摘Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a new and very effective method to determine the coefficients in the finite series ex-pansion that approximation f(t) in terms of Jacobi polynomials. Some numerical examples are illustrated.
文摘For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential equations of the second-order. So it is important to develop Asgeirsson mean value theorem. The mean value of solution for the higher order equation hay been discussed primarily and has no exact result at present. The mean value theorem for the higher order equation can be deduced and satisfied generalized biaxial symmetry potential equation by using the result of Asgeirsson mean value theorem and the properties of derivation and integration. Moreover, the mean value formula can be obtained by using the regular solutions of potential equation and the special properties of Jacobi polynomials. Its converse theorem is also proved. The obtained results make it possible to discuss on continuation of the solutions and well posed problem.