摘要
本文考虑基于一般Jacobi多项式J_n^(α,β)(x)(—1<α,β<1)零点的Grnwald插值多项式G_n(f,x);主要证明了G_n(f,x)在(—1,1)内几乎一致收敛于连续函数f(x),并给出了点态逼近估计;拓广和完善了文献[1,2]的结果。
The Grunwald interpolation based on the zeros of the Jacobi polynomials is considered. It shows that Grunwald polynomials converges uniformly to the continuous function on any closed subinterval of [-1,1]. The correspondng pointwise approximation estimates are given. Consequently, the results of [1] and [2] are extended.
出处
《应用数学》
CSCD
北大核心
1995年第4期379-384,共6页
Mathematica Applicata