摘要
用正交配置法求解了球形吸附剂在搅拌槽中的液相吸附动力学模型.文中计算并图示出Freundlich平衡指数(n)和Langmuir平衡参数(K)对吸附的影响、配置点数对计算精度的影响以及粒内吸附量分布随时间的变化关系等.同时以Jacobi正交多项式为基础,构造出权函数w(x)=1-x2且配置点数从1-20并适用于球体对称性问题的正交配置系数表.矩阵A和B具有各行元素之和等于零的特性,而矩阵W具有各元素之和等于形状因子之倒数的特性.
This paper is concerned with the dynamic process of liquid-phase adsorption in a batch adsorber by the orthogonal collocation method for spherical adsorbents. It is showed that the effect of the Freundlich and Langmuir constants on adsorptipn, the effect ofthe number of collocation poillts on accuracy, and the change of the distribution of the amount adsorbed within adsorbent particles with dimensionless time. The orthogonal collocation coefficients for symmetric sphere are constructed for the collocation points N from one to twenty, based on the Jacobi polynomials with the weighting function w(x) =1-x2. The matrixes A and B are characterized by that the summation of all elements in each row of A or B is equal to zero. The matrix W is characterized by that the summation of all elements in W equals the reciprocal of the shape factor (a).
出处
《计算机与应用化学》
CAS
CSCD
1997年第4期273-280,共8页
Computers and Applied Chemistry
基金
国家教委留学回国人员科研基金!360-1993
福建省自然科学基金!006-1993
关键词
球形吸附剂
液相吸附
吸附剂
吸附动力学
Orthogonal collocation, Symmetric sphere, Jacobi polynomials,Liquid-phase adsorption