期刊文献+

Jacobi多项式解变分数阶非线性微积分方程 被引量:1

Numerical solution of variable fractional order nonlinear differentialintegral equation by Jacobi polynomial
下载PDF
导出
摘要 为求解一类变分数阶非线性微积分方程,提出了一种求解该类方程数值解的方法.该方法主要利用移位的Jacobi多项式将方程中的函数逼近,再结合Captuo类型的变分数阶微积分定义,推导出移位Jacobi多项式的微积分算子矩阵,将最初的方程转化为矩阵相乘的形式,然后通过离散变量,将原方程转化为一系列非线性方程组.通过解该非线性方程组得到移位Jacobi多项式的系数,进而可得原方程的数值解.最后,通过数值算例的精确解和数值解的绝对误差验证了该方法的高精度性和有效性. In order to solve a class of variable fractional order nonlinear differential-integral equations, the numerical solution is proposed. Function approximation based on Shifted Jacobi polynomials, combining Caputo-type variable order fractional derivate definition, which are used to get the operational matrixes of Shifted Jacobi polynomials, are the main characteristic behind this method. With the operational matrix, the original equation is translated into the products of several dependent matrixes, which can be regarded as a system of nonlinear equations after dispersing the variable. By solving the nonlinear system of algebraic equations, the coefficients of Shifted Jacobi polynomials are got, then the numerical solntions of the original equation are acquired. Finally, some numerical examples illustrate the accuracy and effectiveness of the method.
机构地区 燕山大学理学院
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2016年第11期1341-1346,共6页 Journal of Liaoning Technical University (Natural Science)
基金 河北省自然科学基金项目(A2012203047)
关键词 JACOBI多项式 变分数阶非线性微积分方程 算子矩阵 数值解 绝对误差 Jacobi polynomials variable fractional order nonlinear differential-integral equation operational matrixe numerical solution the absolute error
  • 相关文献

参考文献15

  • 1DRAPACA C S,SIVALOGANATHAN S. A Fractional Model of Continuum Mechanics[J].Journal of Elasticity,2012(107):105-123. 被引量:1
  • 2ROSSIKHIN Y A,SHITIKOVA M V.Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems[J].Acta Mechanica,1997(120):109-125. 被引量:1
  • 3ABBASBANDY S.An Approximation solution of a nonlinear equation with riemann-liouville fractional derivatives by he’s variational iteration method[J].Journal of Computation and Applied Mathematics,2007(207): 53-58. 被引量:1
  • 4WANG Y X,FAN Q B,CUI Y H, et al.Wavelet method for a class of fractional convection-diffusion equation with variable coefficients[J]. Journal of Computational Science,2010,1(3):146-149. 被引量:1
  • 5Samko S G,Ross B.Intergation and differentiation to a variable fractional order[J].Integral Transforms and Special Functions,1993,1(4):277-300. 被引量:1
  • 6RAMIREZ L E S,COIMBRA C F M.A variable-order constitutive relation for viscoelasticity[J].Annals of Physics,2007,16(7-8):543-552. 被引量:1
  • 7SOON C M,COIMBRA C F M,KOBAYASHI M H.The variable viscoelasticity oscillator[J].Annals of Physics,2005,14(6):378-389. 被引量:1
  • 8LIN R,LIU F,ANH V,et al.Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation[J].Applied Mathematics and Computation, 2009(212):435-445. 被引量:1
  • 9INGMAN D,SUZDALNITSKY J,ZEIFMAN M.Constitutive dynamic- order model for nonlinear contact phenomena[J].Journal of Applied Mechanies,2000(67):383-390. 被引量:1
  • 10陈一鸣,孙慧,刘丽丽,孙璐.Legendre小波在非线性分数阶微分方程中的应用[J].辽宁工程技术大学学报(自然科学版),2013,32(4):573-576. 被引量:3

二级参考文献11

  • 1陈景华.Caputo分数阶反应-扩散方程的隐式差分逼近[J].厦门大学学报(自然科学版),2007,46(5):616-619. 被引量:14
  • 2Li Bicheng,Luo Jianshu.Wavelet analysis and its application[M]. Beijing Electronics industry,2005. 被引量:1
  • 3Gorenflo R, Mainardi F, Moretti D. Time fractional diffusion:a discrete random walk approach[J]. Journal of Nonlinear Dynamics,2000,29(3): 129-143. 被引量:1
  • 4Huang F,Liu F. The fundamental solution of the space- time fractional advection disersion equation[J].J Appl.Math & Computing, 2005,18(2): 339-350. 被引量:1
  • 5Podlubny I. Fractional differential equations[M].San Diego: Academic Press, 1999. 被引量:1
  • 6Razzaghi M,Yousefi S. Legendre wavelets method for the nonlinear Volterra Fredholm integral equations[J].Math.Comput.Simul.,2005(70): 1-8. 被引量:1
  • 7Yousefi S. Numerical solution of Abel's integral equations by using Legendre wavelets[J].Applied Mathematics and Computation, 2006(175): 574-580. 被引量:1
  • 8Yin Jianhua,Ren Jianya. Legendre wavelet method for solving nonlinear Fredholm iutegro-differential equations of fractional order[J].Journal of Liaoning Technical University: Natural Science,2012,31 (3):405-408. 被引量:1
  • 9Maleknejad K, Sohrabi S. Numerical solution of Fredholm integral equations of the lust kind by using Legendre wavelets[J].Jinst.Math. Appl.,2007(186): 836-843. 被引量:1
  • 10Rawashdeh E. Numerical solution of fractional integro-differential equations by collocation method[J].Appl math Comput,2006,13(7): 176-186. 被引量:1

共引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部