Nickel-based superalloys have been widely used in aerospace fields,especially for engine hot-end parts,because of their excellent high-temperature resistance.However,they are difficult to machine and process because o...Nickel-based superalloys have been widely used in aerospace fields,especially for engine hot-end parts,because of their excellent high-temperature resistance.However,they are difficult to machine and process because of their special properties.High-energy beam additive manufacturing(HEB-AM)of nickel-based superalloys has shown great application potential in aerospace and other fields.However,HEB-AM of nickel-based superalloys faces serious cracking problems because of the unique characteristics of superalloys,and this has become the most significant bottleneck restricting their application.In this review,the current research status related to the types,formation mechanisms,and suppression methods of cracks in nickel-based superalloys produced by HEB-AM is described.The initiation and propagation mechanisms of cracks and their multiple influencing factors are also analyzed and discussed.Then,several possible research directions to solve the cracking problems in nickel-based superalloys produced by HEB-AM are outlined.This review provides an in-depth and comprehensive understanding of the cracking problem in AM nickel-based superalloys.It also provides valuable references for AM crack-free nickel-based superalloy components.展开更多
Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by...Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing.展开更多
Radiotherapy is a mainstay treatment for malignant tumors in clinical practice.However,enhancing radiation damage to tumor cells meanwhile sparing normal tissues is still a great challenge in radiotherapy.Nanomaterial...Radiotherapy is a mainstay treatment for malignant tumors in clinical practice.However,enhancing radiation damage to tumor cells meanwhile sparing normal tissues is still a great challenge in radiotherapy.Nanomaterials with high atomic number(Z)values are promising radiosensitizers by promoting the radiation energy deposition in irradiated tumor cells,thus enhancing the therapeutic ratio of radiotherapy.In this review,we described the mechanisms of high-Z element based-radiosensitizers and systematically summarized the recent progress on high-Z metal-based nanomaterials,including high-Z metal-based nanoparticles,high-Z metal-based nanoscale metal-organic frameworks and high-Z metal-doping nanomaterials.Finally,further potential and challenges in this field were discussed.展开更多
A novel method to prepare ceramic coatings has been developed by making use of plasma energy produced from the pulsed discharge between electric conductor and aqueous electrolyte. A ZrO2-8%Y2O3 coating was obtained by...A novel method to prepare ceramic coatings has been developed by making use of plasma energy produced from the pulsed discharge between electric conductor and aqueous electrolyte. A ZrO2-8%Y2O3 coating was obtained by this method, which had excellent adhesion with substrate, smooth surface and good resistance to high temperature oxidation.展开更多
All-solid-state thin-film lithium batteries(TFLBs)are the ideal wireless power sources for on-chip micro/nanodevices due to the significant advantages of safety,portability,and integration.As the bottleneck for increa...All-solid-state thin-film lithium batteries(TFLBs)are the ideal wireless power sources for on-chip micro/nanodevices due to the significant advantages of safety,portability,and integration.As the bottleneck for increasing the energy density of TFLBs,the key components of cathode,electrolyte,and anode are still underway to be improved.In this review,a brief history of TFLBs is first outlined by presenting several TFLB configurations.Based on the state-of-the-art materials developed for lithium-ion batteries(LIBs),the challenges and related strategies for the application of those potential electrode and electrolyte materials in TFLBs are discussed.Given the advanced manufacture and characterization techniques,the recent advances of TFLBs are reviewed for pursuing the high-energy-density and long-termdurability demands,which could guide the development of future TFLBs and analogous all-solid-state lithium batteries.展开更多
The pulse energy in the ultrafast soliton fiber laser oscillators is usually limited by the well-known wave-breaking phenomenon owing to the absence era desirable real saturable absorber (SA) with high power toleran...The pulse energy in the ultrafast soliton fiber laser oscillators is usually limited by the well-known wave-breaking phenomenon owing to the absence era desirable real saturable absorber (SA) with high power tolerance and large modulation depth. Here, we report a type of microfiber-based MoTe2 SA fabricated by the magnetron-sputtering deposition (MSD) method. High-energy wave-breaking free soliton pulses were generated with pulse duration/pulse energy/average output power of 229 fs/2.14 nJ/57 mW in the 1.5 μm regime and 1.3 ps/13.8 nJ/ 212 mW in the 2 μm regime, respectively. To our knowledge, the generated soliton pulses at 1.5μm had the shortest pulse duration and the highest output power among the reported erbium-doped fiber lasers mode locked by transition metal dichalcogenides. Moreover, this was the first demonstration of a MoTe2-based SA in fiber lasers in the 2 ltm regime, and the pulse energy/output power are the highest in the reported thulium-doped fiber lasers mode locked by two-dlmensional materials. Our results suggest that a microfiber-based MoTe2 SA could be used as an excellent photonic device for ultrafast pulse generation, and the MSD technique opens a promising route to produce a high-performance SA with high power tolerance and large modulation depth, which are beneficial for high-energy wave-breaking free pulse generation.展开更多
采用参数化等间距点焊式沉积策略,以高能微弧火花数控化沉积工艺在45钢上制备出了Al Co Cr Fe Ni高熵合金多层涂层.通过SEM和XRD研究了Al Co Cr Fe Ni高熵合金涂层表面形貌及相组成.以层数为变量,研究了电极长度消耗规律和电极/工件质...采用参数化等间距点焊式沉积策略,以高能微弧火花数控化沉积工艺在45钢上制备出了Al Co Cr Fe Ni高熵合金多层涂层.通过SEM和XRD研究了Al Co Cr Fe Ni高熵合金涂层表面形貌及相组成.以层数为变量,研究了电极长度消耗规律和电极/工件质量过渡规律,并通过Bézier曲线拟合出电极长度消耗曲线、阳极质量损失曲线、和阴极质量增加曲线.电极长度消耗规律和质量过渡规律为实现多层连续不间断沉积和涂层显微结构的精确控制奠定基础.高能微弧火花数控化沉积工艺为功能涂层的制备提供了新方法.展开更多
基金National Natural Science Foundation of China(Grant Nos.52201040,52275333)China Postdoctoral Science Foundation(Grant No.2021M701291)+2 种基金AVIC Manufacturing Technology Institute of China(Grant No.KZ571801)Hubei Provincial Department of Science and Technology 2020 Provincial Key R&D Plan of China(Grant No.2020BAB049)Wuhan Science and Technology Project of China(Grant No.2020010602012037).
文摘Nickel-based superalloys have been widely used in aerospace fields,especially for engine hot-end parts,because of their excellent high-temperature resistance.However,they are difficult to machine and process because of their special properties.High-energy beam additive manufacturing(HEB-AM)of nickel-based superalloys has shown great application potential in aerospace and other fields.However,HEB-AM of nickel-based superalloys faces serious cracking problems because of the unique characteristics of superalloys,and this has become the most significant bottleneck restricting their application.In this review,the current research status related to the types,formation mechanisms,and suppression methods of cracks in nickel-based superalloys produced by HEB-AM is described.The initiation and propagation mechanisms of cracks and their multiple influencing factors are also analyzed and discussed.Then,several possible research directions to solve the cracking problems in nickel-based superalloys produced by HEB-AM are outlined.This review provides an in-depth and comprehensive understanding of the cracking problem in AM nickel-based superalloys.It also provides valuable references for AM crack-free nickel-based superalloy components.
基金supported by the Basque Government(Eusko Jaurlaritza)(Nos.KK-2022/00080 Minaku,KK-2022/00070 Edison)tthe Spanish Ministry of Science and Innovation(Nos.PID2019-109220RB-I00 Alasurf,PDC2021-121042-I00 EHU-Coax)the Basque Government(Eusko Jaurlaritza)in call IT 1573-22 for the financial support of the research group.
文摘Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing.
基金supported by the National Natural Science Foundation of China(Nos.82172762,21904119,31900991,82073395)the Innovation Talent Support Program of Henan Province(No.21HASTIT043)+1 种基金the Postdoctoral Science Foundation of China(Nos.2020TQ0288,2021M690140)the Postdoctoral Innovative Talent Support Program of Henan Province(No.ZYYCYU202012179).
文摘Radiotherapy is a mainstay treatment for malignant tumors in clinical practice.However,enhancing radiation damage to tumor cells meanwhile sparing normal tissues is still a great challenge in radiotherapy.Nanomaterials with high atomic number(Z)values are promising radiosensitizers by promoting the radiation energy deposition in irradiated tumor cells,thus enhancing the therapeutic ratio of radiotherapy.In this review,we described the mechanisms of high-Z element based-radiosensitizers and systematically summarized the recent progress on high-Z metal-based nanomaterials,including high-Z metal-based nanoparticles,high-Z metal-based nanoscale metal-organic frameworks and high-Z metal-doping nanomaterials.Finally,further potential and challenges in this field were discussed.
文摘A novel method to prepare ceramic coatings has been developed by making use of plasma energy produced from the pulsed discharge between electric conductor and aqueous electrolyte. A ZrO2-8%Y2O3 coating was obtained by this method, which had excellent adhesion with substrate, smooth surface and good resistance to high temperature oxidation.
基金financial support from the National Key R&D Program of China (Grant No. 2016YFA0202602)the National Natural Science Foundation of China (Grant Nos. 51931006, 51871188, and 51701169)+2 种基金the Natural Science Foundation of Fujian Province of China (No. 2019J06003 and 2020J05014)the Fundamental Research Funds for the Central Universities of China (Xiamen University: Nos. 20720200080, 20720200068, and 20720190007)the “Double-First Class” Foundation of Materials Intel igent Manufacturing Discipline of Xiamen University
文摘All-solid-state thin-film lithium batteries(TFLBs)are the ideal wireless power sources for on-chip micro/nanodevices due to the significant advantages of safety,portability,and integration.As the bottleneck for increasing the energy density of TFLBs,the key components of cathode,electrolyte,and anode are still underway to be improved.In this review,a brief history of TFLBs is first outlined by presenting several TFLB configurations.Based on the state-of-the-art materials developed for lithium-ion batteries(LIBs),the challenges and related strategies for the application of those potential electrode and electrolyte materials in TFLBs are discussed.Given the advanced manufacture and characterization techniques,the recent advances of TFLBs are reviewed for pursuing the high-energy-density and long-termdurability demands,which could guide the development of future TFLBs and analogous all-solid-state lithium batteries.
基金National Natural Science Foundation of China(NSFC)(11704260,61405126,61605122,61775146)Shenzhen Science and Technology Project(JCY20150324141711695,JCYJ20160427105041864,JSGG20160429114438287,KQJSCX20160226194031,JCYJ20160422103744090)+1 种基金Beijing University of Posts and Telecommunications(BUPT)(IPOC2015B003)Natural Science Foundation of Guangdong Province(2016A030310049,2016A030310059)
文摘The pulse energy in the ultrafast soliton fiber laser oscillators is usually limited by the well-known wave-breaking phenomenon owing to the absence era desirable real saturable absorber (SA) with high power tolerance and large modulation depth. Here, we report a type of microfiber-based MoTe2 SA fabricated by the magnetron-sputtering deposition (MSD) method. High-energy wave-breaking free soliton pulses were generated with pulse duration/pulse energy/average output power of 229 fs/2.14 nJ/57 mW in the 1.5 μm regime and 1.3 ps/13.8 nJ/ 212 mW in the 2 μm regime, respectively. To our knowledge, the generated soliton pulses at 1.5μm had the shortest pulse duration and the highest output power among the reported erbium-doped fiber lasers mode locked by transition metal dichalcogenides. Moreover, this was the first demonstration of a MoTe2-based SA in fiber lasers in the 2 ltm regime, and the pulse energy/output power are the highest in the reported thulium-doped fiber lasers mode locked by two-dlmensional materials. Our results suggest that a microfiber-based MoTe2 SA could be used as an excellent photonic device for ultrafast pulse generation, and the MSD technique opens a promising route to produce a high-performance SA with high power tolerance and large modulation depth, which are beneficial for high-energy wave-breaking free pulse generation.
文摘采用参数化等间距点焊式沉积策略,以高能微弧火花数控化沉积工艺在45钢上制备出了Al Co Cr Fe Ni高熵合金多层涂层.通过SEM和XRD研究了Al Co Cr Fe Ni高熵合金涂层表面形貌及相组成.以层数为变量,研究了电极长度消耗规律和电极/工件质量过渡规律,并通过Bézier曲线拟合出电极长度消耗曲线、阳极质量损失曲线、和阴极质量增加曲线.电极长度消耗规律和质量过渡规律为实现多层连续不间断沉积和涂层显微结构的精确控制奠定基础.高能微弧火花数控化沉积工艺为功能涂层的制备提供了新方法.