期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
On a Refinement of Hardy-Hilbert's Inequality and Its Applications 被引量:4
1
作者 杨必成 《Northeastern Mathematical Journal》 CSCD 2000年第3期279-286,共8页
In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's typ... In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's type inequality and its strengthened form are given, and Hardy-Li ttlewood's inequality is generalized and improved. 展开更多
关键词 hardy-Hilbert's inequality weight coefficient hardy- littlewood's inequality
下载PDF
Hardy-Hilbert型积分不等式的一个推广及其应用(英文) 被引量:1
2
作者 贺乐平 陈小雨 谭立 《数学杂志》 CSCD 北大核心 2006年第5期485-490,共6页
本文讨论带参数的Hardy-Hilbert型积分不等式.利用改进了的Hlder不等式对它进行了推广,作为其应用,给出了Hardy-Littlewood不等式的推广.
关键词 hardy-HILBERT α不等式 hardy-littlewood不等式 HOLDER不等式 权系数 Β函数
下载PDF
Functionals for Multilinear Fractional Embedding 被引量:2
3
作者 William BECKNER 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第1期1-28,共28页
A novel representation is developed as a measure for multilinear fractional embedding. Corresponding extensions are given for the Bourgain-Brezis-Mironescu theorem and Pitt's inequal- ity. New results are obtained fo... A novel representation is developed as a measure for multilinear fractional embedding. Corresponding extensions are given for the Bourgain-Brezis-Mironescu theorem and Pitt's inequal- ity. New results are obtained for diagonal trace restriction on submanifolds as an application of the Hardy-Littlewood-Sobolev inequality. Smoothing estimates are used to provide new structural un- derstanding for density functional theory, the Coulomb interaction energy and quantum mechanics of phase space. Intriguing connections are drawn that illustrate interplay among classical inequalities in Fourier analysis. 展开更多
关键词 Fractional embedding hardy-littlewood-Sobolev inequality diagonal trace restriction Coulomb interaction Pitt's inequality
原文传递
AN EXTENSION OF THE HARDY-LITTLEWOOD-PóLYA INEQUALITY 被引量:3
4
作者 John Villavert 《Acta Mathematica Scientia》 SCIE CSCD 2011年第6期2285-2288,共4页
The Hardy-Littlewood-PSlya (HLP) inequality [1] states that if a ∈ lp, b ∈ 1q and In this article, we prove the HLP inequality in the case where A = 1,p = q = 2 with a logarithm correction, as conjectured by Ding ... The Hardy-Littlewood-PSlya (HLP) inequality [1] states that if a ∈ lp, b ∈ 1q and In this article, we prove the HLP inequality in the case where A = 1,p = q = 2 with a logarithm correction, as conjectured by Ding [2]:In addition, we derive an accurate estimate for the best constant for this inequality. 展开更多
关键词 hardy-littlewood-Polya inequality logarithm correction
下载PDF
Necessary and Sufficient Conditions of Doubly Weighted Hardy-Littlewood-Sobolev Inequality 被引量:1
5
作者 Zuoshunhua Shi Wu Di Dunyan Yan 《Analysis in Theory and Applications》 2014年第2期193-204,共12页
Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be poin... Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be pointed out that we con- sider whole ranges of p and q, i.e., 0 〈 p ≤∞ and 0 〈 q ≤∞. 展开更多
关键词 Holder's inequality Young's inequality hardy-littlewood-Sobolev inequality Lorentz space.
下载PDF
关于一个加强的Hardy-Littlewood-Polya不等式
6
作者 孙保炬 《科技通报》 北大核心 2012年第11期23-26,共4页
应用改进的Euler-Maclaurin求和公式,得到权系数不等式,从而建立了一个加强的Hardy-Lit-tlewood-Polya不等式。
关键词 hardy-littlewood-Polya不等式 hardy-HILBERT不等式 EULER-MACLAURIN求和公式 权系数
下载PDF
NEW DYNAMIC INEQUALITIES FOR DECREASING FUNCTIONS AND THEOREMS OF HIGHER INTEGRABILITY
7
作者 S.H.Saker D.O'Regan +1 位作者 M.M.Osman R.P.Agarwal 《Annals of Applied Mathematics》 2018年第2期165-177,共13页
In this paper we establish some new dynamic inequalities on time scales which contain in particular generalizations of integral and discrete inequalities due to Hardy, Littlewood, Polya, D'Apuzzo, Sbordone and Popoli... In this paper we establish some new dynamic inequalities on time scales which contain in particular generalizations of integral and discrete inequalities due to Hardy, Littlewood, Polya, D'Apuzzo, Sbordone and Popoli. We also apply these inequalities to prove a higher integrability theorem for decreasing functions on time scales. 展开更多
关键词 reverse Holder's inequality Gehring class higher integrability hardy-littlewood-Polya inequality time scales
原文传递
关于Kato不等式的另一证法
8
作者 薄洪波 《哈尔滨商业大学学报(自然科学版)》 CAS 2009年第6期746-747,755,共3页
阐述了在希尔伯特空间中,利用耗散算A子对Kato不等式进行证明的详细过程.
关键词 Kato不等式 函数范数:hardy-littlewood-Polya不等式
下载PDF
一个推广的Hardy-Littlewood-Polya定理
9
作者 杨必成 《广东教育学院学报》 2000年第3期1-5,共5页
在加强条件 k(t,1 )及 k(1 ,t)在 t∈ [0 ,1 ]单调递减的情况下推广 Hardy-Littlewood-Polya定理 ,并推广 Hardy-Hilbert定理及
关键词 hardy-littlewood-Polya定理 推广 单调递减 条件 情况
下载PDF
一类共形不变摄动积分方程正解的存在性 被引量:1
10
作者 许建开 伍火熊 谭忠 《中国科学:数学》 CSCD 北大核心 2012年第4期329-340,共12页
本文讨论了一类共形不变摄动积分方程正解的存在性.我们证明了:当参数对(p,q)属于集合(n,0)×(0,∞)且pq+p+2n=0时,对应摄动积分方程存在正解;而当参数对(p,q)属于集合(0,∞)×(∞,0)也满足pq+p+2n=0时,摄动积分方程不存在非负... 本文讨论了一类共形不变摄动积分方程正解的存在性.我们证明了:当参数对(p,q)属于集合(n,0)×(0,∞)且pq+p+2n=0时,对应摄动积分方程存在正解;而当参数对(p,q)属于集合(0,∞)×(∞,0)也满足pq+p+2n=0时,摄动积分方程不存在非负解.这与原共形不变积分方程有着本质的不同,此结果隐含着这类积分方程正解的存在性取决于解在无穷远处的性态. 展开更多
关键词 积分方程 压缩映射 移动平面法 径向对称解 hardy-littlewood-Sobolev不等式
原文传递
具有Choquard项的分数阶Kirchhoff型方程解 被引量:1
11
作者 于雪 桑彦彬 韩志玲 《吉林大学学报(理学版)》 CAS 北大核心 2022年第6期1251-1258,共8页
考虑分数阶Choquard型Kirchhoff临界问题微分方程解的存在性.首先,引入Hardy-Littlewood-Sobolev嵌入定理,并结合Nehari流形方法及与问题相关的能量泛函纤维映射,证明该方程在参数λ足够小时非平凡解的存在性;其次,利用Ekeland变分原理... 考虑分数阶Choquard型Kirchhoff临界问题微分方程解的存在性.首先,引入Hardy-Littlewood-Sobolev嵌入定理,并结合Nehari流形方法及与问题相关的能量泛函纤维映射,证明该方程在参数λ足够小时非平凡解的存在性;其次,利用Ekeland变分原理得到泛函具有(PS)序列,再选取适当的参数λ,结合截断方法和山路引理证明其紧性条件成立;最后,利用分数阶的集中紧性原理建立该方程非平凡解的存在性. 展开更多
关键词 Choquard方程 分数阶 临界指数 hardy-littlewood-Sobolev不等式 非平凡解
下载PDF
Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent
12
作者 Xiaoming An Shuangjie Peng Chaodong Xie 《Science China Mathematics》 SCIE CSCD 2019年第12期2497-2504,共8页
In this paper, we prove that the supremum sup{ ∫B∫B|u(y)|p(|y|)|u(x)|p(|x|)/|x-y|μdxdy : u ∈ H0,rad1(B), ||?||uL2(B)= 1}is attained, where B denotes the unit ball in RN(N ≥3), μ ∈(0, N), p(r) ... In this paper, we prove that the supremum sup{ ∫B∫B|u(y)|p(|y|)|u(x)|p(|x|)/|x-y|μdxdy : u ∈ H0,rad1(B), ||?||uL2(B)= 1}is attained, where B denotes the unit ball in RN(N ≥3), μ ∈(0, N), p(r) = 2μ*+ rt, t ∈(0, min{N/2-μ/4, N-2}) and 2μ*=(2N-μ)/(N-2) is the critical exponent for the Hardy-Littlewood-Sobolev inequality. 展开更多
关键词 hardy-littlewood-Sobolev inequality achievability of a SUPREMUM SUPERCRITICAL EXPONENT
原文传递
Optimal integrability of some system of integral equations
13
作者 Yutian LEI Chao MA 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第1期81-91,共11页
We obtain the optimal integrability for positive solutions of the Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality in R^n :{u(x)=1/|x|^α|∫R^n v(y)^q|y|^β|x-y|^λdy,v(x)=1/|x... We obtain the optimal integrability for positive solutions of the Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality in R^n :{u(x)=1/|x|^α|∫R^n v(y)^q|y|^β|x-y|^λdy,v(x)=1/|x|^β∫R^n u(y)^p|y|^α|x-y|^λdy.C. Jin and C. Li [Calc. Var. Partial Differential Equations, 2006, 26: 447-457] developed some very interesting method for regularity lifting and obtained the optimal integrability for p, q 〉 1. Here, based on some new observations, we overcome the difficulty there, and derive the optimal integrability for the case of p, q ≥1 and pq ≠1. This integrability plays a key role in estimating the asymptotic behavior of positive solutions when |x| →0 and when |x|→∞. 展开更多
关键词 Integral equation weighted hardy-littlewood-Sobolev inequality integrability interval
原文传递
球面上的次临界最佳Sobolev不等式
14
作者 王胜军 张书陶 韩亚洲 《数学进展》 CSCD 北大核心 2021年第2期239-244,共6页
本文在球面S^(N)上建立了一类最佳Sobolev不等式:||∫||^(2)LqS^(N)≤(q-2)Γ(N-d/2+1/dΓ(N+d/2)(∫_(S^(N)f(§)d§-Γ(N+d/2)/Γ(N-d)/2∫_(S^(N)|∫|^(2)d§),其中Ad(0<d<N是S^(N)的高阶保形算子,d§S^(N)的... 本文在球面S^(N)上建立了一类最佳Sobolev不等式:||∫||^(2)LqS^(N)≤(q-2)Γ(N-d/2+1/dΓ(N+d/2)(∫_(S^(N)f(§)d§-Γ(N+d/2)/Γ(N-d)/2∫_(S^(N)|∫|^(2)d§),其中Ad(0<d<N是S^(N)的高阶保形算子,d§S^(N)的归一化曲面测度,2≤q<2N/N-d. 展开更多
关键词 最佳Sobolev不等式 最佳hardy-littlewood-Sobolev不等式
原文传递
Hardy–Littlewood–Sobolev Inequalities with the Fractional Poisson Kernel and Their Applications in PDEs
15
作者 Lu CHEN Guozhen LU Chunxia TAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第6期853-875,共23页
The purpose of this paper is five-fold. First, we employ the harmonic analysis techniques to establish the following Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel on the upper half space ■ ... The purpose of this paper is five-fold. First, we employ the harmonic analysis techniques to establish the following Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel on the upper half space ■ where f ∈ L^p(?R_+~n), g ∈ Lq(R_+~n) and p, q'∈(1, +∞), 2 ≤α < n satisfying (n-1)/np+1/q'+(2-α)/n= 1.Second, we utilize the technique combining the rearrangement inequality and Lorentz interpolation to show the attainability of best constant C_(n,α,p,q'). Third, we apply the regularity lifting method to obtain the smoothness of extremal functions of the above inequality under weaker assumptions. Furthermore,in light of the Pohozaev identity, we establish the sufficient and necessary condition for the existence of positive solutions to the integral system of the Euler–Lagrange equations associated with the extremals of the fractional Poisson kernel. Finally, by using the method of moving plane in integral forms, we prove that extremals of the Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel must be radially symmetric and decreasing about some point ξ_0 ∈ ?R_+~n. Our results proved in this paper play a crucial role in establishing the Stein–Weiss inequalities with the Poisson kernel in our subsequent paper. 展开更多
关键词 Existence of EXTREMAL functions hardylittlewood–Sobolev inequality Moving plane method Poisson kernel
原文传递
上半空间积分方程组正解的轴对称性
16
作者 李冬艳 《纺织高校基础科学学报》 CAS 2014年第2期153-157,161,共6页
烄考虑上半空间R+n中积分方程组{u(x)=∫n R+(Gx,y)vq(y)dy,v(x)=∫R+n G(x,y)up(y)d y}正解的性质,其中G(x,y)是具有Dirichlet边界条件的超调和算子(-Δ)m的格林函数.采用积分形式的移动平面法,证明了指数12m p和q之一严格小于1,且在1/... 烄考虑上半空间R+n中积分方程组{u(x)=∫n R+(Gx,y)vq(y)dy,v(x)=∫R+n G(x,y)up(y)d y}正解的性质,其中G(x,y)是具有Dirichlet边界条件的超调和算子(-Δ)m的格林函数.采用积分形式的移动平面法,证明了指数12m p和q之一严格小于1,且在1/p+1+1/q+1+2m/n=1的情形下,方程组正解关于某一平行于xn轴的直线轴对称. 展开更多
关键词 积分方程组 积分形式移动平面法 轴对称性 hardy-littlewood-Sobolev不等式
下载PDF
临界Hartree方程组基态解的存在性
17
作者 郑雨 沈自飞 《数学进展》 CSCD 北大核心 2020年第1期53-63,共11页
本文考虑临界耦合的Hartree方程组{-△+λu=∫Ω|u(z)|^2*μ/|x-z|μdz|u|^2*μ-2u+βν,x∈Ω,-△+νu=∫Ω|ν(z)|^2*μ/|x-z|μdz|u|^2*μ-2u+βν,x∈Ω,其中Ω是RN中带有光滑边界的有界区域,N≥3,λ,v是常数,且满足λ,v>-λ1(... 本文考虑临界耦合的Hartree方程组{-△+λu=∫Ω|u(z)|^2*μ/|x-z|μdz|u|^2*μ-2u+βν,x∈Ω,-△+νu=∫Ω|ν(z)|^2*μ/|x-z|μdz|u|^2*μ-2u+βν,x∈Ω,其中Ω是RN中带有光滑边界的有界区域,N≥3,λ,v是常数,且满足λ,v>-λ1(Ω),λ1(Ω)是(-△,H01(Ω))的第一特征值,β> 0是耦合参数,临界指标2μ*=(2N-μ)/(N-2)来源于Hardy-LittlewoodSobolev不等式,利用变分的方法证明了临界Hartree方程组基态正解的存在性. 展开更多
关键词 Hartree方程组 Brezis-Nirenberg问题 hardy-littlewood-Sobolev不等式 临界指标
原文传递
一类常微分方程的区间振动准则
18
作者 张存华 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第6期106-110,共5页
对二阶半线性常微分方程[r(t)|y’(t)|α-1y’(t)]’+q(t)|y(t)|α-1[y(t)+β|y(t)|]=0建立了一些区间振动准则,这些准则并不是系数q(t)依赖整个区间[t0,∞)的性质,而是依赖区间[t0,∞)子区问列的性质,所得结果推广了已有的结果.
关键词 二阶半线性常微分方程 区间振动准则 hardylittlewood—Polya不等式 Riccati技巧
下载PDF
带有凹凸非线性项的Choquard方程的非平凡解
19
作者 李聪 鲁一宪 王玉凤 《曲阜师范大学学报(自然科学版)》 CAS 2021年第2期35-43,共9页
研究带有凹凸非线性项的Choquard方程:-Δu+u=(I_(α)*|u|^(p))|u|^(p-2)u+μg(x,u)+λf(x,u),u∈H_(0)^(1)(Ω),其中Iα是里斯位势,Ω是R^(N)中的有界光滑区域,μ是参数,λ>0.通过变分法证明当p∈(N+α/N,N+α/(N-2))+(N≥1),α∈(0... 研究带有凹凸非线性项的Choquard方程:-Δu+u=(I_(α)*|u|^(p))|u|^(p-2)u+μg(x,u)+λf(x,u),u∈H_(0)^(1)(Ω),其中Iα是里斯位势,Ω是R^(N)中的有界光滑区域,μ是参数,λ>0.通过变分法证明当p∈(N+α/N,N+α/(N-2))+(N≥1),α∈(0,N)及非线性扰动满足一些结构性假设时解的存在性. 展开更多
关键词 凹凸非线性项 山路定理 喷泉定理 hardy-littlewood-Sobolev不等式
下载PDF
一维空间中临界离散加权型Hardy-Littlewood-Sobolev不等式
20
作者 许建开 程泽 房艳芹 《中国科学:数学》 CSCD 北大核心 2015年第2期129-140,共12页
本文建立了R1中临界版的离散加权型Hardy-Littlewood-Sobolev不等式∑-N≤r,s≤N;r≠0,s≠0;r≠s(1/|r|α*arbs|s|α/|r-s|≤CαλαN‖a‖2‖b‖2),其中α≥0,a=(a-N,...,aN),b=(b-N,...,bN).当α≥1时,我们得到了最佳常数λαN为Nα-1... 本文建立了R1中临界版的离散加权型Hardy-Littlewood-Sobolev不等式∑-N≤r,s≤N;r≠0,s≠0;r≠s(1/|r|α*arbs|s|α/|r-s|≤CαλαN‖a‖2‖b‖2),其中α≥0,a=(a-N,...,aN),b=(b-N,...,bN).当α≥1时,我们得到了最佳常数λαN为Nα-1/2,即∑-N≤r,s≤N;r≠0,s≠0;r≠s(1/|r|α*arbs|s|α/|r-s|≤CαNα-1/2‖a‖2‖b‖2). 展开更多
关键词 hardy-littlewood-Sobolev不等式 特征值 最佳常数
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部