期刊文献+

Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent

Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent
原文传递
导出
摘要 In this paper, we prove that the supremum sup{ ∫B∫B|u(y)|p(|y|)|u(x)|p(|x|)/|x-y|μdxdy : u ∈ H0,rad1(B), ||?||uL2(B)= 1}is attained, where B denotes the unit ball in RN(N ≥3), μ ∈(0, N), p(r) = 2μ*+ rt, t ∈(0, min{N/2-μ/4, N-2}) and 2μ*=(2N-μ)/(N-2) is the critical exponent for the Hardy-Littlewood-Sobolev inequality. In this paper,we prove that the supremum sup{∫B∫B|u(y)|^p(|y|)|u(x)|^p(|x|)/|x-y|^u dxdy:u∈H0^1,rad(B),‖▽u‖L^2(B)=1}is attained,where B denotes the unit ball in R^N(N≥3),μ∈(0,N),p(r)=2^xμ+r^t,t∈(0,min{N/2-μ/4,N-2})and 2μ^*=(2N-μ)/(N-2)is the critical exponent for the Hardy-Littlewood-Sobolev inequality.
出处 《Science China Mathematics》 SCIE CSCD 2019年第12期2497-2504,共8页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11831009 and 11571130)
关键词 Hardy-Littlewood-Sobolev INEQUALITY achievability of a SUPREMUM SUPERCRITICAL EXPONENT Hardy-Littlewood-Sobolev inequality achievability of a supremum supercritical exponent
  • 相关文献

参考文献1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部