期刊文献+

The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation 被引量:17

The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation
原文传递
导出
摘要 We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation -Δu=(integral ((|u(y)|^(2*)_μ/|x-y|~μ)dy) from Ω )|μ|^(2*_μ-2_u)+λu in Ω where Ω is a bounded dotain of R^N with Lipschitz boundary, λ is a real parameter, N≥3,2_μ~*=(2 N-μ)/(N-2)is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality. We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation -Δu=(integral ((|u(y)|^(2*)μ/|x-y|~μ)dy) from Ω )|μ|^(2*μ-2u)+λu in Ω where Ω is a bounded dotain of R^N with Lipschitz boundary, λ is a real parameter, N≥3,2μ~*=(2 N-μ)/(N-2)is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
出处 《Science China Mathematics》 SCIE CSCD 2018年第7期1219-1242,共24页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11571317 and 11671364) Natural Science Foundation of Zhejiang(Grant No.LY15A010010)
  • 相关文献

同被引文献5

引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部