期刊文献+

一类共形不变摄动积分方程正解的存在性 被引量:1

Existence of positive solution to a perturbed conformal invariant integral equation
原文传递
导出
摘要 本文讨论了一类共形不变摄动积分方程正解的存在性.我们证明了:当参数对(p,q)属于集合(n,0)×(0,∞)且pq+p+2n=0时,对应摄动积分方程存在正解;而当参数对(p,q)属于集合(0,∞)×(∞,0)也满足pq+p+2n=0时,摄动积分方程不存在非负解.这与原共形不变积分方程有着本质的不同,此结果隐含着这类积分方程正解的存在性取决于解在无穷远处的性态. In this article,the existence of non-negative solution to a perturbed conformal invariant integral equation was studied.As p ∈(n,0),q 0 such that pq + p + 2n = 0,the existence of non-negative solutions to perturbed integral equation is established,however as p ∈(0,∞),q 0 such that pq + p + 2n = 0,we show the perturbed integral equation has not non-negative solutions,which is different from the original conformal invariant integral equation and denotes the existence of integral equation is determined by the behavior of solution near infinity.
出处 《中国科学:数学》 CSCD 北大核心 2012年第4期329-340,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10976026,1107120) 国家自然科学基金专项基金-天元基金(批准号:11126148) 福建省自然科学基金(批准号:2010J01013) 湖南省农业大学大学生创新性试验计划(批准号:XCX1122)资助项目
关键词 积分方程 压缩映射 移动平面法 径向对称解 Hardy-Littlewood-Sobolev不等式 integral equations contraction mapping moving plane method radial symmetric solution hardy-Littlewood-Sobolev inequality
  • 相关文献

参考文献10

  • 1Chen W X,Li C M,Ou B.Classification of solutions for a system of integral equation[].Communications in Partial Differential Equations.2005 被引量:1
  • 2Lieb E H,Loss M.Analysis[].Graduate Studies in Mathematics.2001 被引量:1
  • 3Chen W X,Li C M.Metheod on Nonlinear Elliptic Equations[].SPIN AIMS’’internal project number Monograph.2010 被引量:1
  • 4Li Y Y.Remark on some conformally invariant integral equations:the method of moving spheres[].J Eur Math Soc.2004 被引量:1
  • 5Xu X W.Uniqueness and non-existence theorem for conformally invariant equations[].Journal of Functional Analysis.2005 被引量:1
  • 6Chen W X,Li C M,Ou B.Classification of Solutions for an Integral equation[].Communications on Pure and Applied Mathematics.2006 被引量:1
  • 7Chen W X,Li C M,Ou B.Alternative proofs on the radial Symmetry and Monotonicity of Positive Regular Solution to a Singular Integral Equation[]..2005 被引量:1
  • 8Xu X W.Uniqueness theorem for integral equations and its application[].Journal of Functional Analysis.2007 被引量:1
  • 9Xu X W.Exact solution of nonlinear conformally invariant integral equation[].Advances in Mathematics.2005 被引量:1
  • 10. 被引量:1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部