期刊文献+

Hardy–Littlewood–Sobolev Inequalities with the Fractional Poisson Kernel and Their Applications in PDEs

Hardy–Littlewood–Sobolev Inequalities with the Fractional Poisson Kernel and Their Applications in PDEs
原文传递
导出
摘要 The purpose of this paper is five-fold. First, we employ the harmonic analysis techniques to establish the following Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel on the upper half space ■ where f ∈ L^p(?R_+~n), g ∈ Lq(R_+~n) and p, q'∈(1, +∞), 2 ≤α < n satisfying (n-1)/np+1/q'+(2-α)/n= 1.Second, we utilize the technique combining the rearrangement inequality and Lorentz interpolation to show the attainability of best constant C_(n,α,p,q'). Third, we apply the regularity lifting method to obtain the smoothness of extremal functions of the above inequality under weaker assumptions. Furthermore,in light of the Pohozaev identity, we establish the sufficient and necessary condition for the existence of positive solutions to the integral system of the Euler–Lagrange equations associated with the extremals of the fractional Poisson kernel. Finally, by using the method of moving plane in integral forms, we prove that extremals of the Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel must be radially symmetric and decreasing about some point ξ_0 ∈ ?R_+~n. Our results proved in this paper play a crucial role in establishing the Stein–Weiss inequalities with the Poisson kernel in our subsequent paper. The purpose of this paper is five-fold. First, we employ the harmonic analysis techniques to establish the following Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel on the upper half space ■ where f ∈ L^p(?R_+~n), g ∈ Lq(R_+~n) and p, q'∈(1, +∞), 2 ≤ α < n satisfying (n-1)/np+1/q'+(2-α)/n= 1.Second, we utilize the technique combining the rearrangement inequality and Lorentz interpolation to show the attainability of best constant C_(n,α,p,q'). Third, we apply the regularity lifting method to obtain the smoothness of extremal functions of the above inequality under weaker assumptions. Furthermore,in light of the Pohozaev identity, we establish the sufficient and necessary condition for the existence of positive solutions to the integral system of the Euler–Lagrange equations associated with the extremals of the fractional Poisson kernel. Finally, by using the method of moving plane in integral forms, we prove that extremals of the Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel must be radially symmetric and decreasing about some point ξ_0 ∈ ?R_+~n. Our results proved in this paper play a crucial role in establishing the Stein–Weiss inequalities with the Poisson kernel in our subsequent paper.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第6期853-875,共23页 数学学报(英文版)
基金 partly supported by a US NSF grant a Simons Collaboration grant from the Simons Foundation
关键词 Existence of EXTREMAL functions Hardy–Littlewood–Sobolev INEQUALITY Moving plane method Poisson kernel Existence of extremal functions Hardy–Littlewood–Sobolev inequality Moving plane method Poisson kernel
  • 相关文献

参考文献1

二级参考文献25

  • 1Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Annals Math., 138, 213-242 (1993). 被引量:1
  • 2Beckner, W.: Geometric inequalities in Fourier analysis. Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton University Press, Princeton, 1995. 被引量:1
  • 3Beckner, W.: Sharp inequalities and geometric manifolds. J. Fourier Anal. Appl., 3, 825 836 (1997). 被引量:1
  • 4Beckner, W.: Logarithmic Sobolev inequalities and the existence of singular integrals. Forum Math., 9, 303-323 (1997). 被引量:1
  • 5Beckner, W.: Pitt's inequality with sharp convolution estimates. Proc. Amer. Math. Soc., 136, 1871-1885 (2008). 被引量:1
  • 6Beckner, W.: Pitt's inequality and the fractional Laplacian: sharp error estimates. Forum Math., 24, 177- 209 (2012). 被引量:1
  • 7Beckner, W.: Multilinear embedding estimates for the fractional Laplacian. Math. Res. Lett., 19, 175-189 (2012). 被引量:1
  • 8Beckner, W.: Embedding estimates and fractional smoothness. Int. Math. Res. Notices, 2, 390-417 (2014). 被引量:1
  • 9Beckner, W.: Multilinear embedding -- convolution estimates on smooth submanifolds. Proc. Amer. Math. Soc., 142, 1217-1228 (2014). 被引量:1
  • 10Beckner, W.: Multilinear embedding and Hardy's inequality. Advanced Lectures in Mathematics, to appear. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部