期刊文献+

Rearrangement Free Method for Hardy-Littlewood-Sobolev Inequalities on S^(n)

原文传递
导出
摘要 For conformal Hardy-Littlewood-Sobolev(HLS)inequalities[22]and reversed conformal HLS inequalities[8]on S^(n),a new proof is given for the attainability of their sharp constants.Classical methods used in[22]and[8]depends on rearrangement inequalities.Here,we use the subcritical approach to construct the extremal sequence and circumvent the blow-up phenomenon by renormalization method.The merit of the method is that it does not rely on rearrangement inequalities.
出处 《Analysis in Theory and Applications》 CSCD 2022年第2期178-203,共26页 分析理论与应用(英文刊)
基金 supported by the National Natural Science Foundation of China(Grant No.12071269) Natural Science Foundation of Zhejiang Province(Grant No.LY18A010013).
  • 相关文献

参考文献1

二级参考文献25

  • 1Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Annals Math., 138, 213-242 (1993). 被引量:1
  • 2Beckner, W.: Geometric inequalities in Fourier analysis. Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton University Press, Princeton, 1995. 被引量:1
  • 3Beckner, W.: Sharp inequalities and geometric manifolds. J. Fourier Anal. Appl., 3, 825 836 (1997). 被引量:1
  • 4Beckner, W.: Logarithmic Sobolev inequalities and the existence of singular integrals. Forum Math., 9, 303-323 (1997). 被引量:1
  • 5Beckner, W.: Pitt's inequality with sharp convolution estimates. Proc. Amer. Math. Soc., 136, 1871-1885 (2008). 被引量:1
  • 6Beckner, W.: Pitt's inequality and the fractional Laplacian: sharp error estimates. Forum Math., 24, 177- 209 (2012). 被引量:1
  • 7Beckner, W.: Multilinear embedding estimates for the fractional Laplacian. Math. Res. Lett., 19, 175-189 (2012). 被引量:1
  • 8Beckner, W.: Embedding estimates and fractional smoothness. Int. Math. Res. Notices, 2, 390-417 (2014). 被引量:1
  • 9Beckner, W.: Multilinear embedding -- convolution estimates on smooth submanifolds. Proc. Amer. Math. Soc., 142, 1217-1228 (2014). 被引量:1
  • 10Beckner, W.: Multilinear embedding and Hardy's inequality. Advanced Lectures in Mathematics, to appear. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部