期刊文献+

Finsler Trudinger-Moser inequalities on R^(2)

原文传递
导出
摘要 The first aim of this article is to study the sharp singular(two-weight)Trudinger-Moser inequalities with Finsler norms on R^(2).The second goal is to propose a different approach to study a vanishing-concentration-compactness principle for the Trudinger-Moser inequalities and use this to investigate the existence and the nonexistence of the maximizers for the Trudinger-Moser inequalities in the subcritical regions.Finally,by applying our Finsler Trudinger-Moser inequalities to suitable Finsler norms,we derive the sharp affine Trudinger-Moser inequalities which are essentially stronger than the Trudinger-Moser inequalities with standard energy of the gradient.
出处 《Science China Mathematics》 SCIE CSCD 2022年第9期1803-1826,共24页 中国科学:数学(英文版)
  • 相关文献

参考文献4

二级参考文献27

  • 1Amari, S.-I. and Nagaoka, H., Methods of Information Geometry, Oxford University Press and Amer.Math. Soc., 2000. 被引量:1
  • 2Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, 2000. 被引量:1
  • 3Amari, S.-I., Differential Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, 20,Springer, 2002. 被引量:1
  • 4Dodson, C. T. J. and Matsuzoe, H., An affine embedding of the gamma manifold, Appl. Sci. (electronic),5(1), 2003, 7-12. 被引量:1
  • 5Dzhafarov, E. D. and Colonius, H., Fechnerian metrics in unidimensional and multidimensional stimulus,Psychological Bulletin and Review, 6, 1999, 239-268. 被引量:1
  • 6Dzhafarov, E. D. and Colonius, H., Fechnerian scaling, probability-distance hypothesis, and Thurstonian link, Technical Report #45, Purdue Mathematical Psychology Program. 被引量:1
  • 7Dzhafarov, E. D. and Colonius, H., Fechnerian Metrics, Looking Back: The End of the 20th Century Psychophysics, P. R. Kileen & W. R. Uttal (eds.), Arizona University Press, Tempe, AZ, 111-116. 被引量:1
  • 8Hwang, T.-Y. and Hu, C.-Y., On a characterization of the gamma distribution: The independence of the sample mean and the sample coefficient of variation, Annals Inst. Statist. Math., 51, 1999, 749-753. 被引量:1
  • 9Lauritzen, S. L., Statistical manifolds, Differential Geometry in Statistical Inferences, IMS Lecture Notes Monograph Series, 10, Hayward California, 1987, 96-163. 被引量:1
  • 10Murray, M. K. and Rice, J. W., Differential Geometry and Statistics, Chapman & Hall, London, 1995. 被引量:1

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部