期刊文献+

局部对偶平坦的Randers度量

Locally Dual Flat Randers Metrics
下载PDF
导出
摘要 该文研究了形如F=α+β的Randers度量的性质,得到了局部对偶平坦的Randers度量的充要条件.同时刻画了当α具有常数曲率或β为闭的1-形式时的Randers度量. In this paper,we find equations that charactrize locally dual flat Finsler metrics in the form F =α+β,whereα=(a_(ij)y^iy^j)^(1/2) is a Riemannian metric andβ= b_iy^i is a 1-form. Then we completely determine the local structure of those whenαis of constant curvature orβis closed.
作者 周宇生
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第4期1083-1090,共8页 Acta Mathematica Scientia
基金 贵阳学院院级项目(200809)资助
关键词 局部对偶平坦 局部射影平坦 RANDERS度量 Locally dual flat Locally projectively flat Randers metrics
  • 相关文献

参考文献2

二级参考文献27

  • 1Amari, S.-I. and Nagaoka, H., Methods of Information Geometry, Oxford University Press and Amer.Math. Soc., 2000. 被引量:1
  • 2Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, 2000. 被引量:1
  • 3Amari, S.-I., Differential Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, 20,Springer, 2002. 被引量:1
  • 4Dodson, C. T. J. and Matsuzoe, H., An affine embedding of the gamma manifold, Appl. Sci. (electronic),5(1), 2003, 7-12. 被引量:1
  • 5Dzhafarov, E. D. and Colonius, H., Fechnerian metrics in unidimensional and multidimensional stimulus,Psychological Bulletin and Review, 6, 1999, 239-268. 被引量:1
  • 6Dzhafarov, E. D. and Colonius, H., Fechnerian scaling, probability-distance hypothesis, and Thurstonian link, Technical Report #45, Purdue Mathematical Psychology Program. 被引量:1
  • 7Dzhafarov, E. D. and Colonius, H., Fechnerian Metrics, Looking Back: The End of the 20th Century Psychophysics, P. R. Kileen & W. R. Uttal (eds.), Arizona University Press, Tempe, AZ, 111-116. 被引量:1
  • 8Hwang, T.-Y. and Hu, C.-Y., On a characterization of the gamma distribution: The independence of the sample mean and the sample coefficient of variation, Annals Inst. Statist. Math., 51, 1999, 749-753. 被引量:1
  • 9Lauritzen, S. L., Statistical manifolds, Differential Geometry in Statistical Inferences, IMS Lecture Notes Monograph Series, 10, Hayward California, 1987, 96-163. 被引量:1
  • 10Murray, M. K. and Rice, J. W., Differential Geometry and Statistics, Chapman & Hall, London, 1995. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部