载氧体在长周期的化学链燃烧中存在严重的烧结与团聚问题,极大限制了化学链燃烧的工业化进展。本文采用流化床结晶造粒的方法,制备出一种高比表面积的铜基载氧体,在流化床热重分析仪(fluidized bed thermogravimetric analyzer,FBTGA)...载氧体在长周期的化学链燃烧中存在严重的烧结与团聚问题,极大限制了化学链燃烧的工业化进展。本文采用流化床结晶造粒的方法,制备出一种高比表面积的铜基载氧体,在流化床热重分析仪(fluidized bed thermogravimetric analyzer,FBTGA)上对其进行了长期化学链燃烧(chemical looping combustion,CLC)循环测试,并对反应前后的载氧体颗粒进行了还原反应实验。实验结果表明,所制备载氧体在900℃的高温下氧化还原循环120次后,其反应活性保持稳定,且并未出现明显的烧结与团聚迹象。对循环前后的载氧体颗粒进行形貌表征分析可知,此种Cu基载氧体的比表面积高达40 m^(2)/g以上,展现出良好的反应活性。此外,载氧体主要成分由CuAl_(2)O_(4)分解为Al_(2)O_(3)和CuO,其循环后仍呈光滑的球形颗粒,并维持多孔结构,活性组分Cu在颗粒表面高度分散。展开更多
The cycle life of oxygen carrier(OC) is crucial to the practical applications of chemical looping combustion(CLC). Cycle performance of Cu/SiO2 prepared with a mechanical mixing method was evaluated based on a CLC...The cycle life of oxygen carrier(OC) is crucial to the practical applications of chemical looping combustion(CLC). Cycle performance of Cu/SiO2 prepared with a mechanical mixing method was evaluated based on a CLC process characterized with an added methane steam reforming step. The Cu/SiO2 exhibited high redox reactivity in the initial cycles, while the performance degraded with cycle number. Through characterization of the degraded Cu/SiO2, the performance degradation was mainly caused by the secondary particles' fragmentation and the fine particles' local agglomeration, which worsened the distribution and diffusion of the reactive gases in the packed bed. A regeneration method of the degraded OC based on re-granulation has been proposed, and its mechanism has been illustrated. With this method, the performance of the degraded OC through 420 redox cycles was recovered to a level close to the initial one.展开更多
基金supported by the Beijing Science and Technology Program(Grant no.Z131100005613045)the National Natural Science Foundation of China(Grant no.51306015)the Fundamental Research Funds for the Central Universities(Grant no.FRF-SD-12-013A)
文摘The cycle life of oxygen carrier(OC) is crucial to the practical applications of chemical looping combustion(CLC). Cycle performance of Cu/SiO2 prepared with a mechanical mixing method was evaluated based on a CLC process characterized with an added methane steam reforming step. The Cu/SiO2 exhibited high redox reactivity in the initial cycles, while the performance degraded with cycle number. Through characterization of the degraded Cu/SiO2, the performance degradation was mainly caused by the secondary particles' fragmentation and the fine particles' local agglomeration, which worsened the distribution and diffusion of the reactive gases in the packed bed. A regeneration method of the degraded OC based on re-granulation has been proposed, and its mechanism has been illustrated. With this method, the performance of the degraded OC through 420 redox cycles was recovered to a level close to the initial one.