期刊文献+

基于铜基氧载体化学链空气分离技术实验研究 被引量:2

Experimental Study of Chemical Looping Air Separation Technology Using Cu-Based Oxygen Carrier
下载PDF
导出
摘要 利用STA409PC综合热分析仪以升温速率热重法研究了铜基氧载体最佳释氧温度;以等温热重法研究了氧载体的颗粒直径、惰性载体种类、混合比率及反应温度对释氧性能的影响.实验结果表明:铜基氧载体的最佳释氧温度为850~1 000℃.随氧载体粒径的减小和惰性载体比率的增加氧载体释氧速率在逐渐增大但变化不大;二氧化硅、二氧化锆和二氧化钛为惰性载体制备的铜基氧载体表现了高的释氧速率和转化率;反应温度对释氧性能影响很大,随反应温度的增加,氧载体的释氧速率明显增大. The optimal reaction temperatures were investigated via the temperature programmed thermogravimetry,and the effects of particle size,species of binder,mixing ratio and reaction temperature on reduction reaction were studied via the isothermal thermogravimetry using STA409PC thermal analyzer.The results showed that the Cu-based oxygen carrier has the high reactivity of releasing oxygen when the temperatures are from 850℃ to 1000℃.The reaction rates have the tendency of increasing as particle sizes decrease and content ratios of binder increase,but the tendency is not apparent.The binders of SiO2,ZrO2 and TiO2 combined with CuO show high reactivity and conversion ratio.The reaction rates increase greatly as the temperature increases.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期107-110,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51274066)
关键词 化学链 空气分离 制氧 铜基氧载体 惰性载体 chemical looping air separation oxygen production Cu-based oxygen carrier binder ####
  • 相关文献

参考文献13

  • 1Hashim S S, Mohamed A R, Bhatia S. Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation [ J ]. Renewable and Sustainable Energy Reviews, 2011,15 (2): 1284 - 1293. 被引量:1
  • 2Smith A R, Klosek J. A review of air separation technologies and their integration with energy conversion processes[J]. Fuel Processing Technology,2001,70(2) : 115 - 134. 被引量:1
  • 3Hong J ,Chaudhry G ,Brisson J G ,et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor[J]. Energy,2009,34(9) :1332 - 1340. 被引量:1
  • 4Jee J G, Kim M B, Lee C H. Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve [J]. Chemical Engineering Science, 2005,60 ( 3 ) : 869 - 882. 被引量:1
  • 5BurdynyT, Struchtrup H. Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process[J]. Energy,2010,35(5) :1884 - 1897. 被引量:1
  • 6Moghtadefi B. Application of chemical looping concept for air separation at high temperatures [ J ]. Energy & Fuels, 2010,24( 1 ) :190 - 198. 被引量:1
  • 7Adfinez-Rubio I, Gayan P, Garefa-Labiano F, et al. Development of CuO-based oxygen-carrier materials suitable for chemical-looping with oxygen uncoupling (CLOU) process[J].Energy Procedia ,2011,4:417 - 424. 被引量:1
  • 8Fossdal A,Bakken E, Oye B A, et al. Study of inexpensive oxygen carders for chemical looping combustion [ J ]. International Journal of Greenhouse Gas Control, 2011,5 (3) :483 -488. 被引量:1
  • 9Shah K,Moghtaderi B, Wall T. Selection of suitable oxygen carriers for chemical looping air separation:a thermodynamic approach[ J]. Energy &Fuels,2012,26(4 ) :2038 - 2045. 被引量:1
  • 10Liu S,Lee D, Liu M, et al. Selection and application of binders for CaSO4 oxygen carrier in chemical-looping combustion[ J]. Energy & Fuels, 2010, 24 ( 12 ) .. 6675 - 6681. 被引量:1

同被引文献20

  • 1焦树建.IGCC的某些关键技术的发展与展望[J].动力工程,2006,26(2):153-165. 被引量:53
  • 2KAKARAS E,KOUNMANAKOS A,DOUKELIS A. Simulation of a Greenfield oxyfuel lignite-fired power plant[J]. Energy Conversion and Management, 2007, 48:2879-2887. 被引量:1
  • 3SHAH K,MOGHTADERI B, ZANGANEH J, et al. Integration options for novel chemical looping air sepa- ration(ICLAS) process for oxygen production in oxy- fuel coal fired power plants [J]. Fuel, 2013, 107: 356-370. 被引量:1
  • 4MOGHTADERI B. Application of chemical looping con- cept for air separation at high temperatures[J]. Energy Fuels, 2010,24 : 190-198. 被引量:1
  • 5CASTLE W F. Air sepration and liquefaction: Recent developments and prospects for the beginning of the new millennium[J]. International Journal of Refrigera- tion, 2002,25 : 158-172. 被引量:1
  • 6BHATTACHARYYA D, RENGASWAMY R. A review of solid oxide fuel cell (SOFC) dynamic models[J]. Indus- trial & Engineering Chemistry Research, 2009,48 ( 13 ) : 6068-6086. 被引量:1
  • 7KAKARAS E, AHLADAS P, SYRMOPOULOS S. Computer simulation studies for the integration of an external dryerinto a Greek lignite-fired power plant [J]. Fuel,2002,81(5) :583-593. 被引量:1
  • 8ADANEZ J, ABAD A, GARCIA-LABIANO F, et al. Progress in chemical-looping combustion and reforming technologies [J]. Progress in Energy and Combustion Science, 2012,38(2) : 215-282. 被引量:1
  • 9FIGUEROA J, FOUT T, PLASYNSKI S, et al. Ad- vances in CO2 capture technology-The U. S. depart- ment of energy's carbon sequestration program[J]. In- ternational Journal of Greenhouse Gas Control, 2008,2 (1) :9-20. 被引量:1
  • 10HOSSAIN M, DE LASA H. Chemical-looping combus- tion (CLC) for inherent CO2 separations-a review[J]. Chemical Engineering Science, 2008, 63 (18): 4433- 4451. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部