The n-divided difference of the composite function h := f o g of functions f, g at a group of nodes t0,t1,…,tn is shown by the combinations of divided differences of f at the group of nodes g(t0),g(t1),…,g(tm...The n-divided difference of the composite function h := f o g of functions f, g at a group of nodes t0,t1,…,tn is shown by the combinations of divided differences of f at the group of nodes g(t0),g(t1),…,g(tm) and divided differences of g at several partial group of nodes t0,t1,…,tn, where m = 1,2,…,n. Especially, when the given group of nodes are equal to each other completely, it will lead to Faà di Bruno's formula of higher derivatives of function h.展开更多
A class of trilinear differential operators is introduced through a technique of assigning signs to derivatives and used to create trilinear differential equations. The resulting trilinear differential operators and e...A class of trilinear differential operators is introduced through a technique of assigning signs to derivatives and used to create trilinear differential equations. The resulting trilinear differential operators and equations are characterized by the Bell polynomials, and the superposition principle is applied to the construction of resonant solutions of exponential waves. Two illustrative examples are made by an algorithm using weights of dependent variables.展开更多
In this paper,by means of the classical Lagrange inversion formula,the authors establish a general nonlinear inverse relation as the solution to the problem proposed in the paper[J.Wang,Nonlinear inverse relations for...In this paper,by means of the classical Lagrange inversion formula,the authors establish a general nonlinear inverse relation as the solution to the problem proposed in the paper[J.Wang,Nonlinear inverse relations for the Bell polynomials via the Lagrange inversion formula,J.Integer Seq.,Vol.22(2019),Article 19.3.8].As applications of this inverse relation,the authors not only find a short proof of another nonlinear inverse relation due to Birmajer,et al.(2012),but also set up a few convolution identities concerning the Mina polynomials.展开更多
We investigate Bell polynomials, also called Touchard polynomials or exponential polynomials, by using and without using umbral calculus. We use three different formulas in order to express various known families of p...We investigate Bell polynomials, also called Touchard polynomials or exponential polynomials, by using and without using umbral calculus. We use three different formulas in order to express various known families of polynomials such as Bernoulli polynomials, poly-Bernoulli polynomials, Cauchy polynomials and falling factorials in terms of Bell polynomials and vice versa. In addition, we derive several properties of Bell polynomials along the way.展开更多
In the present letter, we get the appropriate bilinear forms of (2 + 1)-dimensional KdV equation, extended (2 + 1)-dimensional shallow water wave equation and (2 + 1)-dimensional Sawada -Kotera equation in a ...In the present letter, we get the appropriate bilinear forms of (2 + 1)-dimensional KdV equation, extended (2 + 1)-dimensional shallow water wave equation and (2 + 1)-dimensional Sawada -Kotera equation in a quick and natural manner, namely by appling the binary Bell polynomials. Then the Hirota direct method and Riemann theta function are combined to construct the periodic wave solutions of the three types nonlinear evolution equations. And the corresponding figures of the periodic wave solutions are given. Furthermore, the asymptotic properties of the periodic wave solutions indicate that the soliton solutions can be derived from the periodic wave solutions.展开更多
In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the ...In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the Hirota direct method and the Riemann theta function, respectively. And then the asymptotic analysis demonstrates one periodic wave solution can be reduced to one soliton solution. In the end, the bilinear Backlund transformations are derived.展开更多
In this paper, we consider the higher divided difference of a composite function f(g(t)) in which g(t) is an s-dimensional vector. By exploiting some properties from mixed partial divided differences and multiva...In this paper, we consider the higher divided difference of a composite function f(g(t)) in which g(t) is an s-dimensional vector. By exploiting some properties from mixed partial divided differences and multivariate Newton interpolation, we generalize the divided difference form of Faà di Bruno's formula with a scalar argument. Moreover, a generalized Faà di Bruno's formula with a vector argument is derived.展开更多
We present some matrix and determinant identities for the divided differences of the composite functions, which generalize the divided difference form of Faa di Bruno's formula. Some recent published identities can b...We present some matrix and determinant identities for the divided differences of the composite functions, which generalize the divided difference form of Faa di Bruno's formula. Some recent published identities can be regarded as special cases of our results.展开更多
基金This work was supported by the National Science Foundation of China (Grant No.10471128).
文摘The n-divided difference of the composite function h := f o g of functions f, g at a group of nodes t0,t1,…,tn is shown by the combinations of divided differences of f at the group of nodes g(t0),g(t1),…,g(tm) and divided differences of g at several partial group of nodes t0,t1,…,tn, where m = 1,2,…,n. Especially, when the given group of nodes are equal to each other completely, it will lead to Faà di Bruno's formula of higher derivatives of function h.
文摘A class of trilinear differential operators is introduced through a technique of assigning signs to derivatives and used to create trilinear differential equations. The resulting trilinear differential operators and equations are characterized by the Bell polynomials, and the superposition principle is applied to the construction of resonant solutions of exponential waves. Two illustrative examples are made by an algorithm using weights of dependent variables.
基金supported by the National Natural Science Foundation of China under Grant Nos.11971341 and 12001492the Natural Science Foundation of Zhejiang Province under Grant No.LQ20A010004.
文摘In this paper,by means of the classical Lagrange inversion formula,the authors establish a general nonlinear inverse relation as the solution to the problem proposed in the paper[J.Wang,Nonlinear inverse relations for the Bell polynomials via the Lagrange inversion formula,J.Integer Seq.,Vol.22(2019),Article 19.3.8].As applications of this inverse relation,the authors not only find a short proof of another nonlinear inverse relation due to Birmajer,et al.(2012),but also set up a few convolution identities concerning the Mina polynomials.
文摘We investigate Bell polynomials, also called Touchard polynomials or exponential polynomials, by using and without using umbral calculus. We use three different formulas in order to express various known families of polynomials such as Bernoulli polynomials, poly-Bernoulli polynomials, Cauchy polynomials and falling factorials in terms of Bell polynomials and vice versa. In addition, we derive several properties of Bell polynomials along the way.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11075055,61021004,10735030Shanghai Leading Academic Discipline Project under Grant No.B412Program for Changjiang Scholars and Innovative Research Team in University(IRT0734)
文摘In the present letter, we get the appropriate bilinear forms of (2 + 1)-dimensional KdV equation, extended (2 + 1)-dimensional shallow water wave equation and (2 + 1)-dimensional Sawada -Kotera equation in a quick and natural manner, namely by appling the binary Bell polynomials. Then the Hirota direct method and Riemann theta function are combined to construct the periodic wave solutions of the three types nonlinear evolution equations. And the corresponding figures of the periodic wave solutions are given. Furthermore, the asymptotic properties of the periodic wave solutions indicate that the soliton solutions can be derived from the periodic wave solutions.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10735030 and 11075055Innovative Research Team Program of the National Natural Science Foundation of China under Grant No. 61021004
文摘In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the Hirota direct method and the Riemann theta function, respectively. And then the asymptotic analysis demonstrates one periodic wave solution can be reduced to one soliton solution. In the end, the bilinear Backlund transformations are derived.
基金Acknowledgments. This work was supported by the National Science Foundation of China (Grant Nos. 10471128, 10731060).
文摘In this paper, we consider the higher divided difference of a composite function f(g(t)) in which g(t) is an s-dimensional vector. By exploiting some properties from mixed partial divided differences and multivariate Newton interpolation, we generalize the divided difference form of Faà di Bruno's formula with a scalar argument. Moreover, a generalized Faà di Bruno's formula with a vector argument is derived.
文摘We present some matrix and determinant identities for the divided differences of the composite functions, which generalize the divided difference form of Faa di Bruno's formula. Some recent published identities can be regarded as special cases of our results.