期刊文献+

Bell多项式与调和数的恒等式 被引量:2

Some identities involving Bell polynomials and harmonic number
下载PDF
导出
摘要 应用Riordan群的方法研究普通型Bell多项式与调和数的关系,得到若干恒等式及其一种新的反演关系.由两类Bell多项式的关系,也相应的得到指数型Bell多项式若干恒等式. Using the method of Riordan group,the relations between Bell polynomials and harmonic number were studied,and some identities involving them and a new inverse formula were obtained.Then according to the relationships between two types of Bell polynomials,some identities involving exponential Bell polynomials were correspondingly obtained,also.
出处 《兰州理工大学学报》 CAS 北大核心 2010年第6期124-126,共3页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(1010RJZA049)
关键词 BELL多项式 Riordan群 调和数 反演 Bell polynomial Riordan group harmonic number inversion
  • 相关文献

参考文献11

  • 1BELL E T.Exponential polynomials[J].American Mathematical Monthly,1934,41:411-419. 被引量:1
  • 2COMTETL.Advanced combinatorics[M].Boston:Reidel Publ Co,1974. 被引量:1
  • 3ABBAS M,BOUROUBI S.On new identites for Bell polynomials[J].Discrete Mathematics,2005,2993:5-10. 被引量:1
  • 4YANG Shengliang.Some identites involvong the binomial sequences[J].Discrete Mathematics,2008,308:51-58. 被引量:1
  • 5MIHOUBI M.Bell polynomials and binomial type sequences[J].Discrete Mathematics,2008,308:2450-2459. 被引量:1
  • 6WANG Weiping,WANG Tianming.Matrices related to Bell polynomials[J].Linear Algebra and its Applications,2007,422:139-154. 被引量:1
  • 7PORT D.A characterization of exponential and ordinary generating functions[J].Combin Theory Ser A,2002,98:219-234. 被引量:1
  • 8WANG Weiping,WANG Tian-ming.Matrices related to the idempotent numbers and the numbers of planted forests[J].ARS Combinatoria,2010,94:221-225. 被引量:1
  • 9SHAPIRO L,GETU S,WOAN J.The riordan group[J].Discrete Appl Mathmatics,1991,34:229-239. 被引量:1
  • 10SHAPIRO L.Bejection and riordan group[J].Theor Computer Science,2003,307:403-413. 被引量:1

同被引文献10

  • 1Wang W, Wang T. Generalized Riordan arrays [ J ]. Discrete Math, 2008,308 ( 24 ) :6466 - 6500. 被引量:1
  • 2Shapiro L W, Getu S, Woan W J, et al. The riordan group [ J ]. Discrete Appl Math, 1991,34 (1 -3 ) :229 -239. 被引量:1
  • 3Sprugnoli R. Riordan arrays and combinatorial sums [ J ]. Discrete Math, 1994,132 ( 1 - 3 ) : 267 - 290. 被引量:1
  • 4Ma X. Inverse chains of the Riordan group and their applications to combinatorial sums [ J ]. J Math Res Exposion, 1999, 19 (2) :445 -451. 被引量:1
  • 5Peart P, Woodson L. Triple factorization of some Riordan matrices[ J]. Fibonacci Quart, 1993,31 (2) :121 -128. 被引量:1
  • 6Zhao X, Wang T. Some summation rulers related to the Riordan arrays [ J ]. Discrete Math ,2004,281 (1 -3 ) :295 -307. 被引量:1
  • 7Comtet L. Advanced Combinatorics, D. Reidel Publishing Co. , Dordrecht, 1974. 被引量:1
  • 8Yang S L. Some identities involving the binomial sequences[ J]. Discrete Math,2008,308:51 - 58. 被引量:1
  • 9Wang W, Wang T. Identities on Bell polynomials and sheffer sequences [ J ]. Discrete Math,2009,309:1637 - 1648. 被引量:1
  • 10Charalambides C A. Enumerative Combinatorics, CRC Press Series on Discrete Mathematics and its Applications Chapman. Hall//CRC, Boca Raton, FL,2002. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部