摘要
In this paper, we consider the higher divided difference of a composite function f(g(t)) in which g(t) is an s-dimensional vector. By exploiting some properties from mixed partial divided differences and multivariate Newton interpolation, we generalize the divided difference form of Faà di Bruno's formula with a scalar argument. Moreover, a generalized Faà di Bruno's formula with a vector argument is derived.
In this paper, we consider the higher divided difference of a composite function f(g(t)) in which g(t) is an s-dimensional vector. By exploiting some properties from mixed partial divided differences and multivariate Newton interpolation, we generalize the divided difference form of Faà di Bruno's formula with a scalar argument. Moreover, a generalized Faà di Bruno's formula with a vector argument is derived.
基金
Acknowledgments. This work was supported by the National Science Foundation of China (Grant Nos. 10471128, 10731060).