摘要
In this paper, we introduce a problem of the optimization of approximate solutions of operator equations in the probabilistic case setting, and prove a general result which connects the relation between the optimal approximation order of operator equations with the asymptotic order of the probabilistic width. Moreover, using this result, we determine the exact orders on the optimal approximate solutions of multivariate Freldholm integral equations of the second kind with the kernels belonging to the multivariate Sobolev class with the mixed derivative in the probabilistic case setting.
In this paper, we introduce a problem of the optimization of approximate solutions of operator equations in the probabilistic case setting, and prove a general result which connects the relation between the optimal approximation order of operator equations with the asymptotic order of the probabilistic width. Moreover, using this result, we determine the exact orders on the optimal approximate solutions of multivariate Preldholm integral equations of the second kind with the kernels belonging to the multivariate Sobolev class with the mixed derivative in the probabilistic case setting.
基金
This work was partially supported by the National Natural Science Foundation of China (Grant No. 10371009)
Research Fund for the Doctoral Program Higher Education (Grant No. 20050027007).