期刊文献+

基于Bell多项式方法下广义浅水波方程的N-孤子解 被引量:1

N-Soliton Solutions of Generalized Shallow Water Wave Equation with Bell Polynomial Method
下载PDF
导出
摘要 利用Bell多项式和Hirota双线性方法研究了流体力学中广义浅水波方程,得到了广义浅水波方程的单孤子解、双孤子解和三孤子解,以及N-孤子解的解析表达形式.通过多孤子的演化图形,讨论了不同类型的孤子解的性质. In this paper, via the Bell polynomial and Hirota method,the generalized shallow water wave equation in certain fluids is investigated. The bilinear form, N-soliton solutions analytic expression and B^icklund transformation of the generalized shallow water wave equation are obtained. The one-soliton, two-soliton and three-soliton solutions of the generalized shallow water wave equation are obtained with N-soliton solutions analytic expression. Through graphical analysis, the dynamic features and elastic interactions of different types of multi-soliton solutions for the generalized shallow water wave equation are discussed.
出处 《北方工业大学学报》 2013年第3期60-66,共7页 Journal of North China University of Technology
关键词 PAINLEVÉ分析 BELL多项式 HIROTA方法 广义浅水波方程 Painleve analysis, Bell polynomial, Hirota method, generalized shallow water wave equation
  • 相关文献

参考文献14

  • 1ClarksonP A, Mansfield E L. Symmetry reduc- tions and exact solutions of shallow water wave equations[-J]. Acta Appl. Math., 1995,39: 245- 276. 被引量:1
  • 2沈守枫.(1+1)维广义的浅水波方程的变量分离解和孤子激发模式[J].物理学报,2006,55(3):1016-1022. 被引量:15
  • 3Gardner L R. , Gardner G A, Dogan A. A least- squares finite element scheme for RLW equation [J]. Commun. Numer. Math. , 1996,12 : 795-804. 被引量:1
  • 4Benna J L, Mahoney J. Equation for long waves in nonlinear dispersive systerms[J]. Phil. Trans. R. Soe. Lond. Set. , 1972, A272 : 47-78. 被引量:1
  • 5郭玉翠编著..非线性偏微分方程引论[M].北京:清华大学出版社,2008:284.
  • 6孙福伟,蔡九鲜.变系数(2+1)维破裂孤立子方程的N-孤立子解及其应用[J].北方工业大学学报,2012,24(1):49-54. 被引量:4
  • 7Gao Y T, Tian B. Generalized tanh method with symbolic computation and generalized shallow water wave equation l-J]. Comput. Math. Appl. ,1997,33:115-118. 被引量:1
  • 8Tian B,Gao Y T. Soliton-like solutions for a (2- 1)-dimensional generalization of the shallow water wave equation [J]. Chaos. Soliton and Fraet. , 1996,7:1497-1499. 被引量:1
  • 9Mei J Q, Zhang H Q. Some soliton-like and peri- odic solutions for a (2 + 1)-dimensional generali- zation of shallow water wave equation[J]. Aeta Math. Sci. Set. A. , 2005,25:784-788. 被引量:1
  • 10Ablowitz M J,Clarkson P A. Nonlinear Evolution Equations and Inverse Scattering [-M]. NewYork: Cambridge University Press, 1991. 被引量:1

二级参考文献43

  • 1Ablowitz M J, Clarkson P A. Soliton, Nonlinear Evolution Equations and Inverse Scattering[M]. NewYork:Cambridge University Press, 1991. 被引量:1
  • 2Lou S Y, Lu J Z. Special solutions from the variable separation approach: the Davey-Stewartson equation[J]. Phys. A: Math. Gen. ,1996, 29: 4209. 被引量:1
  • 3広田良吾.孤子理论中的直接方法[M].北京:清华大学出版社,2008. 被引量:2
  • 4Wei G M, Gao Y T. Painleve analysis, auto-Backlund Transformation and new analytic solutions for a generalized variable coefficient Kortewege-de Vries equation [J]. Eur. Phys, 2006, J. B53 : 343-350. 被引量:1
  • 5S. Roy. Choudhury. Integrability characteristics of two-dimensional generalizations of NLS type equations [J]. Mathematical Physics, 2003, D: 5733-5750. 被引量:1
  • 6Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240. 被引量:1
  • 7陈陆君,粱昌洪.1997孤立于理论及其应用—光孤子理论及光孤子通信.西安电子科技大学出版社. 被引量:1
  • 8Russell J S 1844 "Report on waves", Report of the 14th meeting of British Association for the Advancement of Science, John Murray,London, 311. 被引量:1
  • 9Korteweg D J, de Vries G 1895 On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39 422. 被引量:1
  • 10Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys.Rev. Left. 19 1095. 被引量:1

共引文献16

同被引文献11

  • 1沈守枫.(1+1)维广义的浅水波方程的变量分离解和孤子激发模式[J].物理学报,2006,55(3):1016-1022. 被引量:15
  • 2Clarkson P A, Mansfield E L. Symmetry reduc- tions and exact solutions of shallow water wave e- quations[J]. Acta Appl. Math. , 1995,39 : 245-276. 被引量:1
  • 3Gardner L R, Gardner G A, Dogan A. A least- squares finite element scheme for RLW equation [J]. Commun. Numer. Math.,1996 ,12:795 - 804. 被引量:1
  • 4Benjamin T B, Bona J L, Mahony J J. Model equa- tion for long waves in nonlinear dispersive syste- rms[J]. Phil. Trans. R. Soc. Lond. Ser., 1972, 272:47-78. 被引量:1
  • 5Gao Y T, Tian B. Generalized tanh method with symbolic computation and generalized shallow water wave equation [J]. Comput. Math. Appl. ,1997,33:115-118. 被引量:1
  • 6Tian B , Gao Y T. Soliton-like solutions for a (2 q-1 )-dimensional generalization of the shallow water wave equation [J]. Chaos. SolitonsFract. , 1996,7 : 1497-1499. 被引量:1
  • 7Mei J Q, Zhang H Q. Some soliton-like and peri- odic solutions for a (2 + 1) dimensional generali- zation of shallow water wave equation[J]. Acta Math. Sci. Set. A. , 2005, 25:784-788. 被引量:1
  • 8Ablowitz M J, Clarkson P A. Soliton, Nonlinear Evolution Equations and Inverse Scattering [M]. NewYork : Cambridge University Press, 1991. 被引量:1
  • 9Gilson C, Hamlert F, Nimmo J, et al. On the comlinatories of the hirota D-Operators[J]. Psoc. R. Soc. hond. A. , 1996, 452..223-234. 被引量:1
  • 10Lin Luo. New exact solutions and B? cklund transformation for Boiti-Leon-Manna-Pempinelli equation[J]. Physics Letters A. , 2011,375 : 1059 1063. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部