Let G be a finite group and K a field of characteristic zero.It is well-known that if K is a splitting field for G,then G is abelian if and only if any irreducible representation of G has degree 1.In this paper,we gen...Let G be a finite group and K a field of characteristic zero.It is well-known that if K is a splitting field for G,then G is abelian if and only if any irreducible representation of G has degree 1.In this paper,we generalize this result to the case that K is an arbitrary field of characteristic zero(that is,K need not be a splitting field for G),and we also obtain the orthogonality relations of irreducible K-characters of G in this case.Our results generalize some well-known theorems.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.10771132)the Natural Science Foundation of Shandong Province (Grant No.Y2008A03)
文摘Let G be a finite group and K a field of characteristic zero.It is well-known that if K is a splitting field for G,then G is abelian if and only if any irreducible representation of G has degree 1.In this paper,we generalize this result to the case that K is an arbitrary field of characteristic zero(that is,K need not be a splitting field for G),and we also obtain the orthogonality relations of irreducible K-characters of G in this case.Our results generalize some well-known theorems.