期刊文献+

具有常余维数2^k+2^l不动点集的(Z2)k作用

(Z2)^ k -Actions of Fixed Point Set with Constant Codimension 2^k + 2^l
下载PDF
导出
摘要 设(Z2)k作用于光滑闭流形Mn,其不动点集具有常余维数r,Jn,kr是具有上述性质的未定向n维上协边类[Mn]构成的集合.J*,kr=∑n≥rJn,kr为未定向上协边环MO*=∑n≥0MOn的理想.通过构造MO*的一组生成元证明J2*k,+k2l(0<l<k)由所有维数大于2k+2l的上协边类及分解式中每个因子的维数都小于2k的2k+2l维可分解上协边类构成. Let Jn^r,k denote the set of n-dimensional cobordism class containing a representative M^n admitting a (Z2 )k-action with fixed point set of constant codimension J*^r,k=∑n≥rJn^r,k is an idea of the unoriented cobordism ringMO*=∑n≥0MOnIn this paper, special generators of MO, are constructed to prove thatJ*^2k+2l(0〈l〈k) consists of all classes of dimension greater than 2^k +2^l and the decomposables of dimension 2^k +2^l in which each factor of monomials has dimension less than 2^k.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2007年第6期907-911,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10371029) 河北省自然科学基金(批准号:103144) 河北省教育厅博士基金(批准号:201006) 河北师范大学博士基金(批准号:L2005B03)
关键词 (Z2)^K作用 上协边类 不动点集 射影空间丛 ( Z2 ) ^k-action cobordism class fixed point set projective space bundle
  • 相关文献

参考文献4

二级参考文献17

  • 1Pergher, P. L. Q.: (Z2)^2-actions with fixed point set of constant codimension. Topology Appl., 46, 55-64(1992). 被引量:1
  • 2Shaker, R. J.: Constant codimension fixed sets of commuting involutions. Proc. Amer. Math. Soc., 121,275-281 (1994). 被引量:1
  • 3Shaker, R. J.: Dold manifolds with (Z2)^κ-action. Proc. Amer. Math. Soc., 123, 955-958 (1995). 被引量:1
  • 4Wang, Y. Y., Wu, Z. D., Ma, K.: (Z2)^κ-actions with fixed point set of constant codimension 2^κ + 1. Proc.Amer. Math. Soc., 128(5), 1515-1521 (2000). 被引量:1
  • 5Liu, Z., Wu, Z. D.: (Z2)^2-actions with fixed point set of constant codimension 6. Journal of Mathematical Research and Exposition, (in Chinese), to appear. 被引量:1
  • 6Richard L. W. Brown, Inmmersions and embeddings up to cobordism. Can. J. Math., XXIII(6), 1102-1115(1971). 被引量:1
  • 7Wang, Y. Y., Wu, Z. D., Meng Z. J., Commuting Involutions with Fixed Point Set of Variable Codimension.Acta Mathematica Sinica, English Series, 17(3), 425-430 (2001). 被引量:1
  • 8Kosniowski, C., Stong, R. E.: (Z2)^κ-Actions and characteristic numbers. Indiana Univ. Math. J., 28(5),725-743 (1979). 被引量:1
  • 9Wang Y. Y., Wu Z. D. and Ma K., (Z2)^k-actions with fixed point set of constant codimension 2^k + 1, Proc.Amer, Math, Soc,, 2000, 128(5): 1515-1521. 被引量:1
  • 10Stong R. E., On fibering of cobordism classes, Trans. Amer. Math. Soc., 1973, 178: 431-447 . 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部