摘要
设(Z_2)~k作用于光滑闭流形M^n上,其不动点集具有常余维数(2~k-1),法丛分解为 (1,…,1). 2~k-1本文利用Kosniowski-Stong公式得出它的一个必要条件。(Z_2)~2作用于光滑闭流形M^n上,其不动点集具有常余维数3,法丛分解为P={(2,1,0),(2,0,1),(1,1,1)}.J_(n,2)~3(p)是具有上述性质的未定向的n维上协边类[M^n]构成的集合。本文通过构造上协边环MO_*的一组生成元决定了J_(n,2)~3(p)的群结构。
Let Mn be a closed smooth n-manifold, which admits (Z2)k-actions with fixed point set data
By Kosniowski-Stong formula we get a necessary condition. Special generators of the unoriented cobordism ring MO* are constructed to determine the group Jn,23 (P) n-dimensional cobordism classes in MOn containing a representative Mn admitting a (Z2)2-action with fixed point set of constant codimension 3, p - {(2, 1,0), (2,0, 1), (1,1,1)}.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2003年第5期937-942,共6页
Acta Mathematica Sinica:Chinese Series
基金
河北省自然科学基金
关键词
上协边类
不动点集
射影丛
(Z2)^K作用
Cobordism class
Fixed point set
Projective space bundle
(Z2)k-action