期刊文献+
共找到360篇文章
< 1 2 18 >
每页显示 20 50 100
P_n^k(k≡2(mod3))的邻点可区别的强全染色 被引量:6
1
作者 马生全 李敬文 +1 位作者 马明 张忠辅 《经济数学》 2003年第4期77-80,共4页
对简单图 G(V,E) ,V(Gk) =V(G) ,E(Gk ) =E(G)∪ { uv|d(u,v) =k} ,称 Gk为 G的 k次方图 ,其中d (u,v)表示 u,v在 G中的距离 .设 f为用 k色时 G的正常全染色法 ,对 uv∈ E(G) ,满足 C(u)≠ C(v) ,其中C(u) ={ f(u) }∪ { f(v) |uv∈ E(... 对简单图 G(V,E) ,V(Gk) =V(G) ,E(Gk ) =E(G)∪ { uv|d(u,v) =k} ,称 Gk为 G的 k次方图 ,其中d (u,v)表示 u,v在 G中的距离 .设 f为用 k色时 G的正常全染色法 ,对 uv∈ E(G) ,满足 C(u)≠ C(v) ,其中C(u) ={ f(u) }∪ { f(v) |uv∈ E(G) }∪ { f(uv) |uv∈ E(G) } ,则称 f 为 G的 k邻点可区别的强全染色法 ,简记作 k- ASVDTC,且称 χast(G) =min{ k|k- ASVDTC of G}为 G的邻点可区别的强全色数 .本文得到了 k≡2 (mod3)时的 χast(Pkn) ,其中 Pn 为 n阶路 . 展开更多
关键词 强全染色 区别 简单图 临强边染色
下载PDF
C3n^2,C4n^2邻点可区别的全染色 被引量:7
2
作者 马生全 张忠辅 +1 位作者 姚兵 李敬文 《兰州铁道学院学报》 2003年第4期5-6,共2页
设G(V ,E)是阶数不小于 2的简单连通图 ,n是自然数 ,V∪E到 { 1,2 ,… ,k}的映射f满足 uv∈E(G) ,f(u)≠f(v) ,f(u)≠f(uv) ≠f(v) ; uv,uw∈E(G) ,(v≠w) ,f(uv)≠f(uw) ; uv∈E(G) ,G(u) ≠C(v) .其中C(u) =f(u) ∪ {f(uv)|uv∈E(G)... 设G(V ,E)是阶数不小于 2的简单连通图 ,n是自然数 ,V∪E到 { 1,2 ,… ,k}的映射f满足 uv∈E(G) ,f(u)≠f(v) ,f(u)≠f(uv) ≠f(v) ; uv,uw∈E(G) ,(v≠w) ,f(uv)≠f(uw) ; uv∈E(G) ,G(u) ≠C(v) .其中C(u) =f(u) ∪ {f(uv)|uv∈E(G) } .f称为G(V ,E)的一个邻点是可区分的全染色法 ,简记为k AVDTC .其中最小的k称为G的邻点可区别的全色数 .G2 是G再加上G中点间距离为 2时连边后的图 .本文得到了 3n、4n阶圈C23n,C24n 的邻点可区别的全色数 . 展开更多
关键词 简单连通图 全染色 区别 图论 全色数
下载PDF
关于几类图的邻点可区别全染色 被引量:5
3
作者 李光海 李武装 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期139-140,154,共3页
图的邻点可区别全染色是最近提出的新概念.本文给出了风车图Kt3、齿轮图Wn和图Dm,4以及Dm,n和Fm,n的邻点可区别全色数.
关键词 染色 区别 全色数
下载PDF
一类特殊图的两种染色 被引量:3
4
作者 李超 张东翰 《商洛学院学报》 2016年第4期1-2,共2页
利用穷举法和组合分析法讨论了一类特殊图的邻强边染色和邻点可区别的全染色,通过构造具体染色得到了该类图的邻强边色数和邻点可区别的全色数。
关键词 穷举法 强边染色 区别 的全染色
下载PDF
K_m∨W_n及其子图的邻点可区别E-全染色 被引量:2
5
作者 李步军 《兰州理工大学学报》 CAS 北大核心 2013年第3期170-172,共3页
设图G(V,E)为简单图,k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射,如果uv∈E(G),有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),且当C(u)={f(u)}∪{f(uv)|uv∈E(G)}时,C(u)≠C(v),则称f是图G的邻点可区别E-全染色,称此最小的正整数k... 设图G(V,E)为简单图,k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射,如果uv∈E(G),有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),且当C(u)={f(u)}∪{f(uv)|uv∈E(G)}时,C(u)≠C(v),则称f是图G的邻点可区别E-全染色,称此最小的正整数k为图G的邻点可区别E-全色数.设有星图Sn、扇图Fn、轮图Wn与完全图Km,研究得到联图Km∨Wn的邻点可区别E-全色数,根据导出子图的关系,得到Km∨Sn,Km∨Fn的邻点可区别E-全色数. 展开更多
关键词 联图 导出子图 区别 E-全染色 区别E-全色数
下载PDF
P_m×C_n的邻点可区别全染色 被引量:3
6
作者 张效贤 刘永平 +2 位作者 谢继国 张锐 刘海涛 《甘肃科学学报》 2007年第2期19-21,共3页
给出了图Pm×Cn的一种全染色方法,证明了该染色是邻点可区别的,得到了Pm×Cn的邻点可区别全色数:xat此结果尚未见其他文献报道.
关键词 Pm×Cn 区别 全染色 全色数
下载PDF
C_m×C_n的邻点可区别全色数 被引量:2
7
作者 张效贤 《甘肃科学学报》 2008年第2期18-20,共3页
给出了图Cm×Cn的一种全染色方法,并证明了该染色是邻点可区别的,从而得到了Cm×Cn的邻点可区别的全色数:aχt(Cm×Cn)=6.此结果尚未见其他文献报道.
关键词 Cm×Cn 区别 全染色 全色数
下载PDF
若干联图的邻点可区别E-全染色 被引量:1
8
作者 李沐春 强会英 张忠辅 《兰州理工大学学报》 CAS 北大核心 2009年第2期158-161,共4页
G(V,E)是一个简单图,k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射.如果uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻... G(V,E)是一个简单图,k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射.如果uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到路和圈的联图的邻点可区别E-全色数. 展开更多
关键词 联图 区别 E-全色数
下载PDF
图的邻点可区别边划分
9
作者 卞西燕 苗连英 +2 位作者 尚华辉 段春燕 马国翼 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期16-20,共5页
研究了图的邻点可区别边划分所需要的最少边色数.通过对图的度进行分类讨论,证明了不包含K_2且最小度≥188的图有邻点可区别点染色3边划分.这个结论比已有结果更优越.
关键词 边划分 区别 非正常
下载PDF
C_4×C_4、C_4×C_5、C_5×C_5的邻点可区别全色数
10
作者 张效贤 谢继国 《河西学院学报》 2007年第5期9-11,共3页
给出了图C_4×C_4、C_4×C_5、C_5×C_5的一种全染色,从而得到了C_4×C_4、C_4×C_5、C_5×C_5的邻点可区别的全色数为6.
关键词 C4×C4 C4×C5 C5×C5 区别 全染色 全色数
下载PDF
图的点可区别的分数边染色数
11
作者 刘海涛 张强 《数学的实践与认识》 北大核心 2017年第19期245-250,共6页
讨论了图的点可区别的边染色数在分数图论的拓展,采用分数图论中超图的a:b-染色方法,证明了邻点可区别的分数边染色数与分数边染色数的等价性,同时进一步推导出经典图论中几类点可区别的边染色数概念如κ-D(β)-点可区别的边染色数、点... 讨论了图的点可区别的边染色数在分数图论的拓展,采用分数图论中超图的a:b-染色方法,证明了邻点可区别的分数边染色数与分数边染色数的等价性,同时进一步推导出经典图论中几类点可区别的边染色数概念如κ-D(β)-点可区别的边染色数、点可区别的边染色数和边染色数也在分数图论的拓展下具有等价性. 展开更多
关键词 区别 边染色数 分数染色 等价性 超图
原文传递
关于图的邻点可区别全染色 被引量:192
12
作者 张忠辅 陈祥恩 +3 位作者 李敬文 姚兵 吕新忠 王建方 《中国科学(A辑)》 CSCD 北大核心 2004年第5期574-583,共10页
提出了图的邻点可区别全染色的概念,给出了圈、完全图、完全二部图、 扇、轮和树的邻点可区别全色数.
关键词 正常全染色 区别全染色 区别全色数
原文传递
P_m∨P_n的邻点可区别全染色 被引量:27
13
作者 陈祥恩 张忠辅 《西北师范大学学报(自然科学版)》 CAS 2005年第1期13-15,共3页
设G是阶数不小于2的简单连通图,G的k 正常全染色f称为是邻点可区别的,如果对G的任意相邻的两顶 点,其点的颜色及关联边的颜色构成的集合不同.这样的k中最小者称为是G的邻点可区别全色数.得到了两条路的 联图的邻点可区别全色数.
关键词 全染色 区别全染色
下载PDF
若干笛卡尔积图的邻点可区别E-全染色 被引量:24
14
作者 李沐春 张忠辅 《数学的实践与认识》 CSCD 北大核心 2009年第3期215-219,共5页
图G(V,E)的k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射,如果u,v∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到了Pm×Pn,Pm×Cn,C... 图G(V,E)的k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射,如果u,v∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到了Pm×Pn,Pm×Cn,Cm×Cn的邻点可区别E-全色数,其中C(u)={f(u)}∪{f(uv)uv∈E(G)}. 展开更多
关键词 笛卡尔积 区别E-全色数
原文传递
若干倍图的邻点可区别均匀全染色 被引量:20
15
作者 马刚 张忠辅 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第6期1160-1164,共5页
研究一些倍图的邻点可区别均匀全染色(AVDETC),利用构造法和匹配法给出了偶阶完全图、偶阶圈、路、星和轮的倍图的邻点可区别均匀全色数,并验证了它们满足邻点可区别均匀全染色猜想(AVDETCC).
关键词 倍图 区别均匀全染色 区别均匀全色数
下载PDF
Adjacent-Vertex-Distinguishing Total Chromatic Number of P_m×K_n 被引量:16
16
作者 陈祥恩 张忠辅 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2006年第3期489-494,共6页
Let G be a simple graph. Let f be a mapping from V(G) U E(G) to {1, 2,..., k}. Let Cf(v) = {f(v)} U {f(vw)|w ∈ V(G),vw ∈ E(G)} for every v ∈ V(G). If f is a k-propertotal-coloring, and if Cf(u) ... Let G be a simple graph. Let f be a mapping from V(G) U E(G) to {1, 2,..., k}. Let Cf(v) = {f(v)} U {f(vw)|w ∈ V(G),vw ∈ E(G)} for every v ∈ V(G). If f is a k-propertotal-coloring, and if Cf(u) ≠ Cf(v) for uv ∈ V(G),uv E E(G), then f is called k-adjacentvertex-distinguishing total coloring of G(k-AVDTC of G for short). Let χat(G) = min{k|G has a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex-distinguishing total chromatic number. The adjacent-vertex-distinguishing total chromatic number on the Cartesion product of path Pm and complete graph Kn is obtained. 展开更多
关键词 GRAPH total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
下载PDF
联图F_n∨P_m的邻点可区别全染色 被引量:14
17
作者 王继顺 邱泽阳 +1 位作者 张忠辅 段刚 《应用数学学报》 CSCD 北大核心 2006年第5期879-884,共6页
设G(V,E)是阶数至少为2的简单连通图,k是正整数,V∪E到{1,2,3,…k}的映射f满足:对任意uv,uw∈E(G),u≠w,有f(uv)≠f(vw);对任意uv∈E(G),有f(u)≠f(v), f(u)≠f(uv),f(v)≠f(uv);那么称f为G的k-正常全染色,若f还满足对任意uv∈E(G),有G... 设G(V,E)是阶数至少为2的简单连通图,k是正整数,V∪E到{1,2,3,…k}的映射f满足:对任意uv,uw∈E(G),u≠w,有f(uv)≠f(vw);对任意uv∈E(G),有f(u)≠f(v), f(u)≠f(uv),f(v)≠f(uv);那么称f为G的k-正常全染色,若f还满足对任意uv∈E(G),有G(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G),v∈V(G)}那么称f为G的k-邻点可区别的全染色(简记为k-AVDTC),称min{k|G有k-邻点可区别的全染色}为G的邻点可区别的全色数,记作Xat(G).本文得到了联图Fn∨Pm的全色数. 展开更多
关键词 联图 全染色 区别全染色
原文传递
完全二部图广义Mycielski图的邻点可区别全色数与邻强边色数 被引量:15
18
作者 李沐春 强会英 +1 位作者 晁福刚 张忠辅 《数学的实践与认识》 CSCD 北大核心 2008年第19期147-152,共6页
得到了完全二部图Km,n的广义Mycielski图Ml(Km,n),当(l≥1,n≥m≥2)时的邻点可区别全色数与邻强边色数.
关键词 完全二部图 广义MYCIELSKI图 区别全色数 强边色数
原文传递
关于几类特殊图的Mycielski图的邻点可区别全色数(英文) 被引量:13
19
作者 陈祥恩 张忠辅 +1 位作者 晏静之 张贵仓 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期117-122,共6页
设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).... 设G是一个简单图,f是一个从V(G)∪E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}如果f是G的正常全染色且(?)u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).设Xat(G)=min{k|G存在k-AVDTC},则称Xat(G)为G的邻点可区别全色数.给出了路、圈、完全图、完全二分图、星、扇和轮的Mycielski图的邻点可区别全色数. 展开更多
关键词 全染色 区别全染色 区别全色数
下载PDF
图的邻点可区别Ⅰ-均匀全染色 被引量:12
20
作者 王继顺 李步军 《应用数学学报》 CSCD 北大核心 2015年第1期125-136,共12页
提出了图的邻点可区别Ⅰ-均匀全染色的概念,研究了它的一些性质,并给出了路、圈、扇、轮、完全图、完全二部图等的邻点可区别Ⅰ-均匀全色数.进而提出了图的邻点可区别Ⅰ-均匀全色数都不会超过△+2的猜想.
关键词 区别I-全染色 区别I-均匀全染色 区别I-均匀全色数
原文传递
上一页 1 2 18 下一页 到第
使用帮助 返回顶部