期刊文献+

P_n^k(k≡2(mod3))的邻点可区别的强全染色 被引量:6

ADJACENT STRONG VERTEX-DISTINGUISHING TOTAL COLORING OF P_n^k(k≡2(mod 3))
下载PDF
导出
摘要 对简单图 G(V,E) ,V(Gk) =V(G) ,E(Gk ) =E(G)∪ { uv|d(u,v) =k} ,称 Gk为 G的 k次方图 ,其中d (u,v)表示 u,v在 G中的距离 .设 f为用 k色时 G的正常全染色法 ,对 uv∈ E(G) ,满足 C(u)≠ C(v) ,其中C(u) ={ f(u) }∪ { f(v) |uv∈ E(G) }∪ { f(uv) |uv∈ E(G) } ,则称 f 为 G的 k邻点可区别的强全染色法 ,简记作 k- ASVDTC,且称 χast(G) =min{ k|k- ASVDTC of G}为 G的邻点可区别的强全色数 .本文得到了 k≡2 (mod3)时的 χast(Pkn) ,其中 Pn 为 n阶路 . Let G(V,E) be a simple graph,V(G k)=V(G),E(G k)=E(G)∪{uv|d(u,v)=k},G k is called a k-power graph of G,where d(u,v) is denoted the distance from u to v. Suppose f is a proper total coloring of G which use k colors,for uv∈E(G), it's satisfied C(u)≠C(v),where C(u)={f(u)}∪{f(v)|uv∈E(G)}∪{f(uv)|uv∈E(G)}, then f is called a k adjacent strong vertex-distinguishing total coloring of graph G(k-ASVDTC for short)and χ ast (G)=min{k|k-ASVDTC of G} is called the chromatic number of adjacent strong vertex-distinguishing total coloring of graph G. In this paper,we get the X ast (P k n) of P k n(k≡2 (mod 3)),where P n be a path of order n.
出处 《经济数学》 2003年第4期77-80,共4页 Journal of Quantitative Economics
关键词 强全染色 邻点可区别 简单图 临强边染色 k-power graph of path,total coloring, adjacent strong vertex-distinguishing total coloring
  • 相关文献

参考文献6

  • 1Bondy,A. and U. S. R. Murty,Graph Theory wit applications,The Macmillan press Ltd, 1976. 被引量:1
  • 2Zhang Zhongfu, Liu Linzhong and Wang Jianfang ,Adjacent strong edge coloring of graphs,Applied Mathematics Letter, 15 (2002), 623-626. 被引量:1
  • 3Zhang Zhongfu, etc,Adjacent vertex-distinguishing total coloring of graph,to apaper. 被引量:1
  • 4Zhang Zhongfu ,etc,Adjacent strong vertex-distinguishing total coloring of graph,to apaper. 被引量:1
  • 5Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1969. 被引量:1
  • 6Chartrand, G. and L. Lesniak, Graphs and Digraphs, Second edition, Wadsworsth and Brooks/Cole,Monterey, Calif, 1986. 被引量:1

同被引文献31

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部