期刊文献+

若干联图的邻点可区别E-全染色 被引量:1

Adjacent vertex-distinguishable E-total coloring of some join graphs
下载PDF
导出
摘要 G(V,E)是一个简单图,k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射.如果uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到路和圈的联图的邻点可区别E-全色数. Let G(V,E) be a simple graph,k be a positive integer,f be a mapping from V(G) ∪ E(G) to {1,2,...,k}. If arbirary uv∈E(G), we would have f(u)≠f(v), f(u)≠f(uv), f(v)≠f(uv), and C(u)≠C(v) ,where C(u) = {f(u) } ∪ {f(uv) [uv∈E(G) }. Then f would be called the adjacent vertex-distingUishable E-total coloring of G. The minimal number of k would be called the adjacent vertex-distinguishable Etotal chromatic number of G. The adjacent vertex-distinguishable E-total chromatic number on the join graph of path and circle was obtained in this paper.
出处 《兰州理工大学学报》 CAS 北大核心 2009年第2期158-161,共4页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(10771091) 甘肃省高校研究生导师基金(0604-05)
关键词 联图 邻点可区别 E-全色数 path circle join graph adjacent vertex-distinguishable E-total chromatic number
  • 相关文献

参考文献7

二级参考文献16

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2陈义.轮图的广义Mycielski图的邻强边色数[J].经济数学,2003,20(2):77-80. 被引量:3
  • 3Liu Linzhong,Zhang Zhongfu, Wang Jianfang. On the adjacent strong edge coloring of outer plane graphs[J].Mathematics Reserch and Exposition, 2005,25 : 255-266. 被引量:1
  • 4Liu Linzhong, Li Yingzheng, Zhang Zhongfu. On the adjacent strong edge coloring of halin graphs [J]. Mathematics Reserch and Exposition, 2003,23 : 241-246. 被引量:1
  • 5Zhang Zhongfu, et al. The adjacent strong edge chromatic number of graphs[J]. Applied Mathematics Letters, 2002,15:623-626. 被引量:1
  • 6李敬文 张忠辅.一些图的Mycielski图的邻强边色数.兰州交通大学学报,2005,24(3):133-135. 被引量:1
  • 7Bondy JA, Murty USR. Graph Theory with Applicatives[M]. New York, The Macmillan Press, Ltd,1976. 被引量:1
  • 8Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings.J of Graph Theory,1997,26(2): 73-82 被引量:1
  • 9Bazgan C,Harkat-Benhamdine A,Li H,et al.On the vertex-distinguishing proper edge-coloring of graphs.J Combin Theory,Ser B,1999,75: 288-301 被引量:1
  • 10Balister P N,Bollobas B,Schelp R H.Vertex distinguishing colorings of graphs with △(G)=2.Discrete Mathematics,2002,252(2): 17-29 被引量:1

共引文献348

同被引文献1

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部