摘要
G(V,E)是一个简单图,k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射.如果uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到路和圈的联图的邻点可区别E-全色数.
Let G(V,E) be a simple graph,k be a positive integer,f be a mapping from V(G) ∪ E(G) to {1,2,...,k}. If arbirary uv∈E(G), we would have f(u)≠f(v), f(u)≠f(uv), f(v)≠f(uv), and C(u)≠C(v) ,where C(u) = {f(u) } ∪ {f(uv) [uv∈E(G) }. Then f would be called the adjacent vertex-distingUishable E-total coloring of G. The minimal number of k would be called the adjacent vertex-distinguishable Etotal chromatic number of G. The adjacent vertex-distinguishable E-total chromatic number on the join graph of path and circle was obtained in this paper.
出处
《兰州理工大学学报》
CAS
北大核心
2009年第2期158-161,共4页
Journal of Lanzhou University of Technology
基金
国家自然科学基金(10771091)
甘肃省高校研究生导师基金(0604-05)
关键词
路
圈
联图
邻点可区别
E-全色数
path
circle
join graph
adjacent vertex-distinguishable E-total chromatic number