期刊文献+

图的邻点可区别边划分

Adjacent vertex-distinguishing edge partition of graphs
下载PDF
导出
摘要 研究了图的邻点可区别边划分所需要的最少边色数.通过对图的度进行分类讨论,证明了不包含K_2且最小度≥188的图有邻点可区别点染色3边划分.这个结论比已有结果更优越. The minimum number of colors required to give a graph G an adjacent vertexdistinguishing edge partition was studied. Based on the classification of the degree of a graph, this paper proved that every graph without K2 of minimum degree at least 188 permits an adjacent vertex-distinguishing 3-edge partition. The result is more superior than previous ones.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期16-20,共5页 Journal of East China Normal University(Natural Science)
关键词 边划分 邻点可区别 非正常 edge partition adjacent vertex-distinguishing non-proper
  • 相关文献

参考文献11

  • 1KARONSKI M, LUCZAK T, THOMASON A. Edge weights and vertex colors[J]. J Combinatorial Theory Series B, 2004, 91(1): 151-157. 被引量:1
  • 2ADDARIO-BERRY L, DALAL K, MCDIARMID C, et al. Vertex coloring edge weightings[J]. Combinatorica, 2007, 27(1): 1-12. 被引量:1
  • 3AIGNER M, TRIESCH E, TUZA Z S. Irregular assignments and vertex-distinguishing edge-colorings of graphs[J]. Combinatorics, 1992, 90: 1-9. 被引量:1
  • 4WITTMANN P. Vertex-distinguishing edge-colorings of 2-regular graphs[J]. Discrete Applied Mathematics, 1997, 79: 265-277. 被引量:1
  • 5BURRIS A C, SCHEPL R H. Vertex-distinguishing proper edge colorings[J]. J Graph Theory, 1997, 26: 73-82. 被引量:1
  • 6BAZGAN C, HARKAT-BENHAMDINE A, LI H, et al. On the vertex-distinguishing proper edge-colorings of graphs[J]. J Combin Theory Set B, 1999, 75(2):288-301. 被引量:1
  • 7BALISTER P N, BOLLOBAS B, SCHELP R H. Vertex-distinguishing colorings of graphs with A(G) = 2[J]. Discrete Math, 2002, 252: 17-29. 被引量:1
  • 8BALISTER P N, RIORDAN O M, SCHELP R H. Vertex-distinguishing edge colorings of graphs[J]. J Graph Theory, 2003, 42: 95-109. 被引量:1
  • 9HATAMI H. △+ 300 is a bound on the adjacent vertex distinguishing edge chromatic number[J]. J Combin Theory Ser B, 2005, 95: 246-256. 被引量:1
  • 10ZHANG Z, LIU L, WANG J. Adjacent strong edge coloring of graphs[J]. Appl Math Lett, 2002, 15: 623-626. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部