期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于DNA微阵列数据的癌症分类问题研究进展 被引量:20
1
作者 于化龙 顾国昌 +2 位作者 赵靖 刘海波 沈晶 《计算机科学》 CSCD 北大核心 2010年第10期16-22,32,共8页
应用DNA微阵列数据对癌症进行诊断与分型,已经逐渐成为生物信息学领域的研究热点之一。首先概述了基于微阵列数据的癌症分类问题的研究现状与发展趋势。然后简要介绍了微阵列实验的基本步骤,微阵列数据的结构、特点以及用于癌症分类的... 应用DNA微阵列数据对癌症进行诊断与分型,已经逐渐成为生物信息学领域的研究热点之一。首先概述了基于微阵列数据的癌症分类问题的研究现状与发展趋势。然后简要介绍了微阵列实验的基本步骤,微阵列数据的结构、特点以及用于癌症分类的基本流程。接下来重点从数据预处理、特征基因选择、分类器设计以及分类性能评价等几方面对近10年来的研究成果进行了详细的综述与比较分析。最后,对该领域目前仍然存在的问题进行了归纳并对未来可能的研究方向作出了预测与展望。 展开更多
关键词 微阵列数据 癌症分类 数据预处理 特征基因选择 分类器设计 分类性能评价
下载PDF
基于优化的邻域粗糙集的混合基因选择算法 被引量:7
2
作者 陈涛 洪增林 邓方安 《计算机科学》 CSCD 北大核心 2014年第10期291-294,316,共5页
DNA微阵列技术可以同时检测细胞内成千上万的基因的活性,被广泛应用于重大基因疾病的临床诊断。然而微阵列数据通常具有高维小样本特点,且存在大量噪声和冗余基因。为了进一步提高微阵列数据分类性能,提出一种特征基因混合选择算法。首... DNA微阵列技术可以同时检测细胞内成千上万的基因的活性,被广泛应用于重大基因疾病的临床诊断。然而微阵列数据通常具有高维小样本特点,且存在大量噪声和冗余基因。为了进一步提高微阵列数据分类性能,提出一种特征基因混合选择算法。首先采用ReliefF算法剔除大量无关基因,获得特征基因候选子集;然后采用基于差分进化算法优化的邻域粗糙集模型实现特征基因选择;最后利用支持向量机进行分类,以验证算法的有效性。仿真实验结果表明,该算法能用尽可能少的特征基因来获得更高的分类精度,既增强了算法的泛化性能,又提高了时间效率,而且对致病基因的临床诊断有着重要的参考意义。 展开更多
关键词 特征基因选择 RELIEFF算法 邻域粗糙集模型 差分进化算法
下载PDF
多步骤降维的肿瘤特征基因选择方法 被引量:1
3
作者 李小波 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期541-544,共4页
针对基因芯片数据量大、样本数低和基因维数高的特点,提出了一种对基因芯片数据进行多步骤降维处理的分类方法.第一步,采用基因表达差异显著性分析方法(SAM)筛选得到差异表达基因子集.第二步,采用支持向量机(SVM)分类器对该差异表达基... 针对基因芯片数据量大、样本数低和基因维数高的特点,提出了一种对基因芯片数据进行多步骤降维处理的分类方法.第一步,采用基因表达差异显著性分析方法(SAM)筛选得到差异表达基因子集.第二步,采用支持向量机(SVM)分类器对该差异表达基因子集进行进一步的分类降维.将该方法用来处理大肠癌和白血病数据集,得到了数量较少而分类能力较强的特征基因子集.实验结果证明该方法可以快速有效地筛选肿瘤特征基因. 展开更多
关键词 基因芯片数据 特征基因选择 基因表达差异显著性分析方法 支持向量机 降维
原文传递
基于主元分析与近邻距离的特征基因选择与去噪 被引量:1
4
作者 吕江婷 陈少斌 黄宴委 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期49-52,共4页
针对高维小样本大噪声的基因芯片数据,提出一种基于主元分析与k-近邻距离的特征基因选择与去噪方法.首先利用主元分析法获取低维投影空间中的模式特征,依据各个基因贡献率大小排序,选择贡献率大的基因为特征基因,进而利用k-近邻距离来... 针对高维小样本大噪声的基因芯片数据,提出一种基于主元分析与k-近邻距离的特征基因选择与去噪方法.首先利用主元分析法获取低维投影空间中的模式特征,依据各个基因贡献率大小排序,选择贡献率大的基因为特征基因,进而利用k-近邻距离来消除野值噪声以获得稳定高效的分类精度.实验结果表明:提出的特征基因选择与去噪方法,使得特征基因分类精度更高、性能更稳定. 展开更多
关键词 基因表达谱 特征基因选择 主元分析 K-近邻 去噪
原文传递
癌症基因表达谱挖掘中的特征基因选择算法GA/WV 被引量:1
5
作者 申伟科 钟理 +4 位作者 葛昆 张波 王建飞 张小刚 秦向东 《生物信息学》 2010年第2期98-103,共6页
鉴定癌症表达谱的特征基因集合可以促进癌症类型分类的研究,这也可能使病人获得更好的临床诊断?虽然一些方法在基因表达谱分析上取得了成功,但是用基因表达谱数据进行癌症分类研究依然是一个巨大的挑战,其主要原因在于缺少通用而可靠的... 鉴定癌症表达谱的特征基因集合可以促进癌症类型分类的研究,这也可能使病人获得更好的临床诊断?虽然一些方法在基因表达谱分析上取得了成功,但是用基因表达谱数据进行癌症分类研究依然是一个巨大的挑战,其主要原因在于缺少通用而可靠的基因重要性评估方法。GA/WV是一种新的用复杂的生物表达数据评估基因分类重要性的方法,通过联合遗传算法(GA)和加权投票分类算法(WV)得到的特征基因集合不但适用于WV分类器,也适用于其它分类器?将GA/WV方法用癌症基因表达谱数据集的验证,结果表明本方法是一种成功可靠的特征基因选择方法。 展开更多
关键词 遗传算法 加权投票 模式识别 特征基因选择 高维性
下载PDF
基于改进核模糊粗糙集的特征基因混合选择方法
6
作者 陈涛 《中南民族大学学报(自然科学版)》 CAS 2018年第2期121-127,共7页
针对基因表达谱高维、小样本、高冗余和高噪声等特点,提出了一种特征基因混合选择方法.采用Relief F方法对原始基因进行排序,过滤无效基因,获得初选基因子集,给出了基于差分进化算法优化的核模糊粗糙集模型,进行了特征基因终选.仿真实... 针对基因表达谱高维、小样本、高冗余和高噪声等特点,提出了一种特征基因混合选择方法.采用Relief F方法对原始基因进行排序,过滤无效基因,获得初选基因子集,给出了基于差分进化算法优化的核模糊粗糙集模型,进行了特征基因终选.仿真实验结果表明:所提算法比Relief F、Kruskal Wallis、Gini Index等算法在分类精度和基因数量等方面有明显优势. 展开更多
关键词 基因表达谱 特征基因选择 ReliefF方法 核模糊粗糙集 差分进化算法
下载PDF
《生物物理学报》第二十五卷2009年总目录
7
《生物物理学报》 CAS CSCD 北大核心 2009年第6期453-460,共8页
关键词 生物物理学报 特征基因选择 随机森林 目录 检索工具
原文传递
肿瘤特征基因选择的互信息最值过滤原则与粒子群优化算法 被引量:3
8
作者 喻德旷 杨谊 《计算机应用》 CSCD 北大核心 2018年第2期421-426,432,共7页
基因数据小样本、高维数、高冗余的特点常导致特征基因选择出现"维数灾难"和"过拟合",针对这一问题,提出一种特征基因提取算法——互信息最值过滤原则-惯性权重粒子群优化(MIMVFC-IWPSO)算法。首先,借鉴过滤法的思... 基因数据小样本、高维数、高冗余的特点常导致特征基因选择出现"维数灾难"和"过拟合",针对这一问题,提出一种特征基因提取算法——互信息最值过滤原则-惯性权重粒子群优化(MIMVFC-IWPSO)算法。首先,借鉴过滤法的思路,通过计算互信息指标,依据互信息最值过滤原则(MIMVFC)获得特征基因候选子集(FGCS),缩小分类操作的范围,提高特征基因被覆盖的概率;接着,对粒子群优化(PSO)算法进行改进,引入惯性权重实现自调节可变惯性权重粒子群优化(IWPSO)算法,使得在算法迭代初期有着快速的全局优化能力,而在算法后期具有较强的局部搜索能力;最后,运用IWPSO从FGCS中提取核心信息基因子集(CFGS),并基于CFGS对样本进行肿瘤与正常组织的分类。采用3个公开的肿瘤基因表达谱数据进行实验,MIMVFC正确分类率优于信噪比(SNR)、t-检验和信息增益(IG)方法,与卡方统计值(Chi-Square)方法接近,而MIMVFC还能利用IWPSO进一步优化结果。基于相同的FGCS,与目前效果较好的二进制粒子群优化与防治基因算法(BPSO-CGA)相比,IWPSO的运算耗时有所增加,但所获得的CFGS规模减小,准确率提高;而与经典PSO相比,所获得的CFGS规模减小、运算耗时减少、准确率提高。实验结果表明MIMVFC-IWPSO具有较好的综合分类性能,能有效提高准确率和效率,可用于多种肿瘤的特征基因选择,辅助指导分子生物学实验设计和验证。 展开更多
关键词 肿瘤特征基因选择 互信息最值过滤原则 粒子群优化算法 特征基因候选子集 核心信息基因子集
下载PDF
基于ReliefF和蚁群算法的特征基因选择方法分析 被引量:3
9
作者 杨丽 《电脑知识与技术(过刊)》 2017年第11X期199-200,共2页
文章以获得最佳特征分类效果为前提,针对ReliefF算法和蚁群算法,对其在特征基因选择中的运用展开了分析,从而确定了这两种方法对于特征分类的重要意义。
关键词 RELIEFF 蚁群算法 特征基因选择方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部