摘要
鉴定癌症表达谱的特征基因集合可以促进癌症类型分类的研究,这也可能使病人获得更好的临床诊断?虽然一些方法在基因表达谱分析上取得了成功,但是用基因表达谱数据进行癌症分类研究依然是一个巨大的挑战,其主要原因在于缺少通用而可靠的基因重要性评估方法。GA/WV是一种新的用复杂的生物表达数据评估基因分类重要性的方法,通过联合遗传算法(GA)和加权投票分类算法(WV)得到的特征基因集合不但适用于WV分类器,也适用于其它分类器?将GA/WV方法用癌症基因表达谱数据集的验证,结果表明本方法是一种成功可靠的特征基因选择方法。
Identification of gene subsets from gene expression analysis is useful in tumor types classifying , and it would also helps pa- tients to accept better clinic diagnosing. Though some methods for analyzing microarray expression data have shown advantages, it is still a big challenge to connect cancer classification to gene expression profiling data. In this study, we described a novel algorithm for assessing the importance of genes for sample classification based on complex expression data : GA/WV. The gene sets we get by combi- ning genetic algorithm (GA) and weight voting (WV) methods are not only suited for WV classification but other classifictaion. We applied this GA/WV analysis to a set of gene expression data from different tumor tissues, the results of clustering and testing demon- strated that this novel algorithm is an advanced feature gene selection algorithm in gene expression data mining.
出处
《生物信息学》
2010年第2期98-103,共6页
Chinese Journal of Bioinformatics
基金
河北省科技攻关类项目(05245514D)
关键词
遗传算法
加权投票
模式识别
特征基因选择
高维性
Genetic algorithm
Weighted voting scheme
Pattern recognition
Feature gene selection
High - dimensional