期刊文献+

癌症基因表达谱挖掘中的特征基因选择算法GA/WV 被引量:1

GA/WV application in tumor gene expression profiling mining as a feature selection algorithm
下载PDF
导出
摘要 鉴定癌症表达谱的特征基因集合可以促进癌症类型分类的研究,这也可能使病人获得更好的临床诊断?虽然一些方法在基因表达谱分析上取得了成功,但是用基因表达谱数据进行癌症分类研究依然是一个巨大的挑战,其主要原因在于缺少通用而可靠的基因重要性评估方法。GA/WV是一种新的用复杂的生物表达数据评估基因分类重要性的方法,通过联合遗传算法(GA)和加权投票分类算法(WV)得到的特征基因集合不但适用于WV分类器,也适用于其它分类器?将GA/WV方法用癌症基因表达谱数据集的验证,结果表明本方法是一种成功可靠的特征基因选择方法。 Identification of gene subsets from gene expression analysis is useful in tumor types classifying , and it would also helps pa- tients to accept better clinic diagnosing. Though some methods for analyzing microarray expression data have shown advantages, it is still a big challenge to connect cancer classification to gene expression profiling data. In this study, we described a novel algorithm for assessing the importance of genes for sample classification based on complex expression data : GA/WV. The gene sets we get by combi- ning genetic algorithm (GA) and weight voting (WV) methods are not only suited for WV classification but other classifictaion. We applied this GA/WV analysis to a set of gene expression data from different tumor tissues, the results of clustering and testing demon- strated that this novel algorithm is an advanced feature gene selection algorithm in gene expression data mining.
出处 《生物信息学》 2010年第2期98-103,共6页 Chinese Journal of Bioinformatics
基金 河北省科技攻关类项目(05245514D)
关键词 遗传算法 加权投票 模式识别 特征基因选择 高维性 Genetic algorithm Weighted voting scheme Pattern recognition Feature gene selection High - dimensional
  • 相关文献

参考文献26

  • 1Ladanyi M,Chan W C,Triche T J,et al.Expression Profiling of Human Tumors:The End of Surgical Pathology?[J].J Mol Diagn,2001,3(3):92-97. 被引量:1
  • 2Tibshirani R,Hastie T,Narasimhan B,et al.Diagnosis of multiple cancer types by shrunken centroids of gene expression[J].PNAS,2002,99(10):6567-6572. 被引量:1
  • 3Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nat Med,2001,7(6):673-679. 被引量:1
  • 4Alizadeh A A,Eisen M B,Davis R E,et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J].Nature,2000,403(6769):503-511. 被引量:1
  • 5Dhanasekaran S M,Barrette T R,Ghosh D,et al.Delineation of prognostic biomarkers in prostate cancer[J] ,Nature,2001,412(6849):822-826. 被引量:1
  • 6Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537. 被引量:1
  • 7Perou C M,Srlie T,Eisen M B,et al.Molecular portraits of human breast tumors[J].Nature,2000,406(6797):747-752. 被引量:1
  • 8Fu K,Iqbal J,Chan W C.Recent advances in the molecular diagnosis of diffuse large B-cell lymphoma[J] ,Expert Rev Mol Diagn,2005,5(3):397-408. 被引量:1
  • 9van 't Veer L J,Dai H,van de Vijver M J,et al.Gene expression profiling predicts clinical outcome of breast cancer[J].Nature,2002,415(6871):484-485. 被引量:1
  • 10Zhang H,Yu C Y,Singer B.Cell and tumor classification using gene expression data:construction of forests[J].Proc Natl Acad Sci USA,2003,100(7):4168-4172. 被引量:1

同被引文献12

  • 1Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Medicine,2001,7(2):673-678. 被引量:1
  • 2Guyon I,Weston J,Bamhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2002,46(3):389-421. 被引量:1
  • 3Jain A,Zongker F.Feature selection;Evaluation,application,and small sample performance[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(2):153-156. 被引量:1
  • 4Choi K.Input feature selection for classification problems[J].IEEE Trans on Neural Networks,2002,13(1):144-158. 被引量:1
  • 5Li L,Weinberg C R,Darden T A,et al.Gene selection for sample classification based on gene expression data:study of sensitivity to choice of parameters of the GA/KNN method[J].Bioinformatics,2001,17 (12):1131-1142. 被引量:1
  • 6Duda OR,Hart PE,Stork GD.Pattern Classification[M].Second Edition.New York:John wiley & Sons.2001:46-48. 被引量:1
  • 7Tan A C,Naiman D Q,Xu L,et al.Simple decision rules for classifying human cancers from gene expression profiles[J].Bioinformatics,2005,21(20):3896-3904. 被引量:1
  • 8Yu J,Yu J,Almal A A,et al.Feature selection and molecular classification of cancer using genetic programming[J].Neoplasia,2007,9(4):292-303. 被引量:1
  • 9Tan K C,Yu Q,Heng C M,et al.Evolutionary computing for knowledge discovery in medical diagnosis[J].Artif Intell Med,2003,27(2):129-154. 被引量:1
  • 10李建更,高志坤,严志,阮晓钢.基于双基因分析的结肠癌标志基因选择[J].中国生物医学工程学报,2009,28(5):691-695. 被引量:2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部