期刊文献+

基于主元分析与近邻距离的特征基因选择与去噪 被引量:1

Gene selection and noise reduction based on PCA and nearest neighbors distance
原文传递
导出
摘要 针对高维小样本大噪声的基因芯片数据,提出一种基于主元分析与k-近邻距离的特征基因选择与去噪方法.首先利用主元分析法获取低维投影空间中的模式特征,依据各个基因贡献率大小排序,选择贡献率大的基因为特征基因,进而利用k-近邻距离来消除野值噪声以获得稳定高效的分类精度.实验结果表明:提出的特征基因选择与去噪方法,使得特征基因分类精度更高、性能更稳定. For the feature gene selection and noise reduction of gene chip data with high dimensionality, small sample size and large noise, in this paper, a novel approach that based on PCA and k - nearest neighbor distance (k - DNN) is proposed. Specifically, the PCA method is employed to catch the mode feature in the lower dimensional projection space. The contribution value of each gene of the principal loadings is summed; all genes are ranked by their contribution value. Genes with the top number largest contribution are selected as the feature genes (FG). And then, the k - nearest neighbor distance is applied for removing the outliers so that the classification accuracy can become more stable and efficient. The experimental results have showed that our approach is able to make the FGs achieve the higher classification accuracy and more stable performance.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期49-52,共4页 Journal of Fuzhou University(Natural Science Edition)
基金 教育部博士点新教师基金资助项目(20113514120007) 福建省自然科学基金资助项目(2010J05132) 福建省教育厅科研资助项目(JA10034)
关键词 基因表达谱 特征基因选择 主元分析 K-近邻 去噪 microarray gene expression feature gene selection PCA k -nearest neighbor noise reduction
  • 相关文献

参考文献11

二级参考文献60

  • 1李衍达.以信息系统的观点了解基因组[J].电子学报,2001,29(z1):1731-1734. 被引量:7
  • 2李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 3毛勇,皮道映,刘育明,孙优贤.Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification[J].Chinese Journal of Chemical Engineering,2006,14(1):65-72. 被引量:4
  • 4Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [ J ]. Science, 1999,28:531 - 537. 被引量:1
  • 5Ramaswamy S,Golub TR. DNA microarrays in clinical oncology [ J]. Journal of Clinical Oncology ,2002,20( 7 ) : 1932 - 1941. 被引量:1
  • 6Tinker AV, Boussioutas A, Bowtell DDL. The challenges of gent expression microarrays for the study of human cancer [ J ]. Cancer Cell,2006,9:333 - 339. 被引量:1
  • 7Li Shutao,Wu Xixian,Tan Mingkui. Gene selection using hybrid particle swarm optimization and genetic algorithm [ J ]. Soft Comput,2008 ,12 :1039 - 1048. 被引量:1
  • 8Molina LC, Belanche L, Nebot A. Feature selection algorithms: a survey and experimental evaluation [ A ]. In : Proceedings of the IEEE International Conference on Data Mining [ C]. Maebashi: IEEE,2002. 306 - 313. 被引量:1
  • 9Park PJ, Pagano M, Bonetti M. A nonparametrlc scoring algorithm for identifying informative genes from microarray data [ J ]. Pacific Symposium on Biocomputing,2001,6 :52 -63. 被引量:1
  • 10Liu Huiqing,Li Jinyan, Wong Limsoon. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns [J].Genome Information,2002, 13:51 -60. 被引量:1

共引文献15

同被引文献16

  • 1Schena M.Quantitative monitoring of gene expression patterns with a DNA microarray[J].Science,1995,270(5235):467-470. 被引量:1
  • 2Yang Aijun,Song Xin yuan.Bayesian variable selection for disease classification using gene expression data[J].Bio information,2010,26(2):215-222. 被引量:1
  • 3Inza I,Larranaga P,Blanc R,et al.Filter versus wrapper gene selection approaches in DNA microarray domains[J].Artificial Intelligence in Medicine,2004,31(2):91-103. 被引量:1
  • 4Kira K,Rendell L A.The feature selection problem:Traditional methods and a new algorithm[R].Swartout Wed:Proceedings of the 10th National Conference on Artificial Intelligence.Cambridge,MA:AAA I Press/The MI T Press,1992:129-134. 被引量:1
  • 5Kononenko I.Estimation Attributes:Analysis and Extensions of RELIEF[C]//Proceedings of the 1994European Conference on Machine Learning.ACM Press,1997:273-324. 被引量:1
  • 6Geem Z W,Kim J H,Loganathan G V.A new heuristic optimization algorithm:harmony search[J].Simulation,2001,76(2):60-68. 被引量:1
  • 7ZOU De-xuan,GAO Li-qun,WU Jian-hua,et al.A novel global harmony search algorithm for reliability problems[J].Computers&Industrial Engineering,2010,58(2):307-316. 被引量:1
  • 8ZOU De-xuan,GAO Li-qun,LI S,et al.Solbing 0-1knqpsack problem by a novel global harmony search algorithm[J].Applied Soft Computing,2011,11(2):1556-1564. 被引量:1
  • 9于化龙,顾国昌,赵靖,刘海波,沈晶.基于DNA微阵列数据的癌症分类问题研究进展[J].计算机科学,2010,37(10):16-22. 被引量:20
  • 10雍龙泉.和声搜索算法研究进展[J].计算机系统应用,2011,20(7):244-248. 被引量:72

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部