期刊文献+

多步骤降维的肿瘤特征基因选择方法 被引量:1

Tumor Gene Selection Based on a Muti-step Dimensionality Reduction Approach
原文传递
导出
摘要 针对基因芯片数据量大、样本数低和基因维数高的特点,提出了一种对基因芯片数据进行多步骤降维处理的分类方法.第一步,采用基因表达差异显著性分析方法(SAM)筛选得到差异表达基因子集.第二步,采用支持向量机(SVM)分类器对该差异表达基因子集进行进一步的分类降维.将该方法用来处理大肠癌和白血病数据集,得到了数量较少而分类能力较强的特征基因子集.实验结果证明该方法可以快速有效地筛选肿瘤特征基因. Microarray data has the characteristics of large quantity, low sample size and high gene dimensionality. To face this challenge, a multi-step dimensionality reduction method for classification of microarray data was proposed. In the first step, significant analysis of microarrays (SAM) was used to select a subset of differentially expressed genes (DEGs). In the second step, a step-by-step support vector machine (SVM) classification algorithm was applied to reduce gene dimen- sionaloty of the subset of DEGs. The strategy was evaluated over three datasets of colorectal cancer and leukemia, with smaller gene numbers and higher classification accuracy. The results demonstrated the usefulness and efficiency of the approach for selection of tumor feature genes.
作者 李小波
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期541-544,共4页 Journal of Fudan University:Natural Science
关键词 基因芯片数据 特征基因选择 基因表达差异显著性分析方法 支持向量机 降维 microarray data gene sdection significant analysis of microarrays (SAM) support vector machine (SVM) dimensionality reduction
  • 相关文献

参考文献15

  • 1Van'T Veer L J, Dai H, Van de Vijver M J, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature ,2002,415(6871) :530-536. 被引量:1
  • 2Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[J]. Science, 1999,286(5439) :531-537. 被引量:1
  • 3Guyon I, Weston J, Bamhill S, et al. Gene selection for cancer classification using support vector machines [J ]. Machine Learning, 2002,46 (1-3) : 389-422. 被引量:1
  • 4Huerta E B,Duval B,Hao J K. A hybrid GA/SVM approach for gene selection and classification of microarray data[J ]. Lecture Notes in Computer Science. 2006,3907.34-44. 被引量:1
  • 5Tusher V G, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response [J]. Proc Natl Acad Sci U S A ,2001,98(9) :5116-5121. 被引量:1
  • 6Witten I H, Frank E. Data Mining: Practical machine learning tools and techniques[ M]. 2nd ed. San Francisco: Morgan Kaufmann,2005. 被引量:1
  • 7Alon U, Barkai N, Notterman D A, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J ]. Proc Natl Acad Sci U S A, 1999,96 (12): 6745-6750. 被引量:1
  • 8Barrett T, Troup D B,Wilhite S E, et al. NCBI GEO: mining tens of millions of expression profiles-database and tools update[J]. Nucleic Acids Res, 2007,35 (Database issue) : D760-765. 被引量:1
  • 9Bolstad B M, Irizarry R A,Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J]. Bioinformatics ,2003,19(2) : 185-193. 被引量:1
  • 10Soikkeli J, Lukk M, Nummela P, et al. Systematic search for the best gene expression markers for melanoma micrometastasis detection[J]. J Pathol, 2007,213(2) :180-189. 被引量:1

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部