This paper summarizes the requirements for modem maritime wireless communication networks in the marine environments including the sea- to-sea and sea-to-shore communication scenarios. The existing maritime wireless c...This paper summarizes the requirements for modem maritime wireless communication networks in the marine environments including the sea- to-sea and sea-to-shore communication scenarios. The existing maritime wireless communication sys- tems are presented and the development of the state-of-the-art maritime communication systems is surveyed. Furthermore, a hierarchical and integrated maritime network architecture is proposed to satisfy the increasing various classes of services which demand different Quality of Service (QoS). Finally, the open issues for further development of maritime communications are identified.展开更多
The effect of high-frequency curved track vibrations in the vertical direction on the formation and development of rail corrugation was analyzed. Kalker抯 non-Hertzian rolling contact theory was modified and used to c...The effect of high-frequency curved track vibrations in the vertical direction on the formation and development of rail corrugation was analyzed. Kalker抯 non-Hertzian rolling contact theory was modified and used to calculate the frictional work density on the contact area of the wheel and rail in rolling when a wheelset is steadily curving. The material loss unit area was assumed to be proportional to the frictional work density to determine the wear depth of the contact surface of the rail. The combined influences of the corrugation and the coupled dynamics of the railway vehicle and track were taken into consideration in the numerical simulation. For simplicity, the model considered one fourth of freight car without lateral motion, namely, a wheelset and the equivalent one fourth freight car body above it. The Euler beam was used to model the rails with the track structure under the rails replaced with equivalent springs, dumpers, and mass bodies. The numerical results show that the high-frequency track vibration causes formation of the initial corrugation on the smooth contact surface of the rail when a wheelset is steadily curving. The corrugation wave length depends on the frequencies and the rolling speed of the wheelset. The vibration frequencies also affect the depth and increase the corrugation.展开更多
基金the "Program for Promoting Maritime Economies with Science and Technology" in Tianjin,the National Natural Science Foundation of China,the Tianjin Research Program of Application Foundation and Advanced Technology,the National Science and Technology Major Project,Seed Foundation of Tianjin University
文摘This paper summarizes the requirements for modem maritime wireless communication networks in the marine environments including the sea- to-sea and sea-to-shore communication scenarios. The existing maritime wireless communication sys- tems are presented and the development of the state-of-the-art maritime communication systems is surveyed. Furthermore, a hierarchical and integrated maritime network architecture is proposed to satisfy the increasing various classes of services which demand different Quality of Service (QoS). Finally, the open issues for further development of maritime communications are identified.
基金Supported by the National Natural Science Foundation of China (No. 59935100) and the Foundation of the Ministry of Education China (No. 20020613001) and the Foundation for the Author for National Excellent Doctoral Dissertation China (Nos. 200048 a
文摘The effect of high-frequency curved track vibrations in the vertical direction on the formation and development of rail corrugation was analyzed. Kalker抯 non-Hertzian rolling contact theory was modified and used to calculate the frictional work density on the contact area of the wheel and rail in rolling when a wheelset is steadily curving. The material loss unit area was assumed to be proportional to the frictional work density to determine the wear depth of the contact surface of the rail. The combined influences of the corrugation and the coupled dynamics of the railway vehicle and track were taken into consideration in the numerical simulation. For simplicity, the model considered one fourth of freight car without lateral motion, namely, a wheelset and the equivalent one fourth freight car body above it. The Euler beam was used to model the rails with the track structure under the rails replaced with equivalent springs, dumpers, and mass bodies. The numerical results show that the high-frequency track vibration causes formation of the initial corrugation on the smooth contact surface of the rail when a wheelset is steadily curving. The corrugation wave length depends on the frequencies and the rolling speed of the wheelset. The vibration frequencies also affect the depth and increase the corrugation.