Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in...Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels.展开更多
Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In thi...Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In this paper, based on combination of modified maximum margin criterion and ILTSA, a novel feature extraction method named orthogonal discriminant improved local tangent space alignment (ODILTSA) is proposed. ODILTSA can preserve local geometry structure and maximize the margin between different classes simultaneously. Based on ODILTSA, a novel face recognition method which combines augmented complex wavelet features and original image features is developed. Experimental results on Yale, AR and PIE face databases demonstrate the effectiveness of ODILTSA and the feature fusion method.展开更多
Recently, data-driven methods, especially deep learning, outperform other methods for rolling elementbearing (REB) fault diagnosis. Nevertheless, most research work assumes that REB dataset is unbiased. Inthe real ind...Recently, data-driven methods, especially deep learning, outperform other methods for rolling elementbearing (REB) fault diagnosis. Nevertheless, most research work assumes that REB dataset is unbiased. Inthe real industry applications, the dataset bias exists with REB owing to varying REB working conditions andnoise interference. Recently proposed adversarial discriminative domain adaptation (ADDA) is an increasinglypopular incarnation to solve dataset bias problem. However, it mainly devotes to realizing domain alignments, andignores class-level alignments;it can cause degradation of classification performance. In this study, we proposea new REB fault diagnosis model based on improved ADDA to address dataset bias. The proposed diagnosismodel realizes domain- and class-level alignments in dataset bias scenario;it consists of two feature extractors,a domain discriminator, and two label classifiers. The feature extractors and domain discriminator are trainedin an adversarial manner to minimize the domain difference in feature extractors. The domain discrepancy inlabel classifier is reduced by minimizing correlation alignment (CORAL) loss. We evaluate the proposed model onthe Case Western Reserve University (CWRU) bearing dataset and Paderborn University bearing dataset. Theproposed method yields better results than other methods and has good prospects for industrial applications.展开更多
针对有监督学习下的人脸识别问题,提出自适应判别局部块对齐SALDA(Self adaptive Local Discriminative Alignment)算法用于提取人脸特征。SALDA算法利用各样本点所具有的独特的局部近邻点分布,通过同类近邻点自动构造各样本点的局部邻...针对有监督学习下的人脸识别问题,提出自适应判别局部块对齐SALDA(Self adaptive Local Discriminative Alignment)算法用于提取人脸特征。SALDA算法利用各样本点所具有的独特的局部近邻点分布,通过同类近邻点自动构造各样本点的局部邻域;基于已构造的局部邻域,SALDA提出一个自适应局部判别分析模型,所得到的局部判别信息通过全局排列转化为统一的全局特征表示。SALDA算法具有自适应构造局部邻域和自适应局部判别分析两个特点。通过在人脸数据库上的仿真实验,证明了所提出的SALDA算法在人脸识别上的有效性。展开更多
基金the Natural Science Foundation of Henan Province(232300420094)the Science and TechnologyResearch Project of Henan Province(222102220092).
文摘Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels.
基金the National Natural Science Foundation of China(No.61004088)the Key Basic Research Foundation of Shanghai Municipal Science and Technology Commission(No.09JC1408000)
文摘Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In this paper, based on combination of modified maximum margin criterion and ILTSA, a novel feature extraction method named orthogonal discriminant improved local tangent space alignment (ODILTSA) is proposed. ODILTSA can preserve local geometry structure and maximize the margin between different classes simultaneously. Based on ODILTSA, a novel face recognition method which combines augmented complex wavelet features and original image features is developed. Experimental results on Yale, AR and PIE face databases demonstrate the effectiveness of ODILTSA and the feature fusion method.
基金Foundation item:the Research on Intelligent Ship Testing and Verification(No.[2018]473)。
文摘Recently, data-driven methods, especially deep learning, outperform other methods for rolling elementbearing (REB) fault diagnosis. Nevertheless, most research work assumes that REB dataset is unbiased. Inthe real industry applications, the dataset bias exists with REB owing to varying REB working conditions andnoise interference. Recently proposed adversarial discriminative domain adaptation (ADDA) is an increasinglypopular incarnation to solve dataset bias problem. However, it mainly devotes to realizing domain alignments, andignores class-level alignments;it can cause degradation of classification performance. In this study, we proposea new REB fault diagnosis model based on improved ADDA to address dataset bias. The proposed diagnosismodel realizes domain- and class-level alignments in dataset bias scenario;it consists of two feature extractors,a domain discriminator, and two label classifiers. The feature extractors and domain discriminator are trainedin an adversarial manner to minimize the domain difference in feature extractors. The domain discrepancy inlabel classifier is reduced by minimizing correlation alignment (CORAL) loss. We evaluate the proposed model onthe Case Western Reserve University (CWRU) bearing dataset and Paderborn University bearing dataset. Theproposed method yields better results than other methods and has good prospects for industrial applications.
文摘针对有监督学习下的人脸识别问题,提出自适应判别局部块对齐SALDA(Self adaptive Local Discriminative Alignment)算法用于提取人脸特征。SALDA算法利用各样本点所具有的独特的局部近邻点分布,通过同类近邻点自动构造各样本点的局部邻域;基于已构造的局部邻域,SALDA提出一个自适应局部判别分析模型,所得到的局部判别信息通过全局排列转化为统一的全局特征表示。SALDA算法具有自适应构造局部邻域和自适应局部判别分析两个特点。通过在人脸数据库上的仿真实验,证明了所提出的SALDA算法在人脸识别上的有效性。