期刊文献+

Orthogonal Discriminant Improved Local Tangent Space Alignment Based Feature Fusion for Face Recognition 被引量:1

Orthogonal Discriminant Improved Local Tangent Space Alignment Based Feature Fusion for Face Recognition
原文传递
导出
摘要 Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In this paper, based on combination of modified maximum margin criterion and ILTSA, a novel feature extraction method named orthogonal discriminant improved local tangent space alignment (ODILTSA) is proposed. ODILTSA can preserve local geometry structure and maximize the margin between different classes simultaneously. Based on ODILTSA, a novel face recognition method which combines augmented complex wavelet features and original image features is developed. Experimental results on Yale, AR and PIE face databases demonstrate the effectiveness of ODILTSA and the feature fusion method. Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In this paper, based on combination of modified maximum margin criterion and ILTSA, a novel feature extraction method named orthogonal discriminant improved local tangent space alignment (ODILTSA) is proposed. ODILTSA can preserve local geometry structure and maximize the margin between different classes simultaneously. Based on ODILTSA, a novel face recognition method which combines augmented complex wavelet features and original image features is developed. Experimental results on Yale, AR and PIE face databases demonstrate the effectiveness of ODILTSA and the feature fusion method.
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第4期425-433,共9页 上海交通大学学报(英文版)
基金 the National Natural Science Foundation of China(No.61004088) the Key Basic Research Foundation of Shanghai Municipal Science and Technology Commission(No.09JC1408000)
  • 相关文献

参考文献18

  • 1Turk M A, Pentland A P. Face recognition using eigenfaces [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Maui, Hawaii, USA: IEEE, 1991: 586-591. 被引量:1
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: Recognition using classspecific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. 被引量:1
  • 3He X, Cai D, Yan S, et al. Neighborhood preserving embedding [C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005: 1208-1213. 被引量:1
  • 4He X F, Yan S C, Hu Y X, et al. Face recognition using Laplacian faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340. 被引量:1
  • 5Zhang T, Yang J, Zhao D, et al. Linear local tangent space alignment and application to face recognition [J]. Neurocomputing, 2007, 70: 1547-1553. 被引量:1
  • 6Hu H F. Orthogonal neighborhood preserving discriminant analysis for face recognition [J]. Pattern Recognition, 2008, 41(6): 2045-2054. 被引量:1
  • 7Li B, Huang D S, Wang C, et al. Feature extraction using constrained maximum variance mapping [J]. Pattern Recognition, 2008, 41(11): 3287-3294. 被引量:1
  • 8Li B, Zheng C, Huang D. Locally linear discriminant embedding: An efficient method for face recognition [J]. Pattern Recognition, 2008, 41(12): 3813-3821. 被引量:1
  • 9Li H F, Jiang T, Zhang K S. Efficient and robust feature extraction by maximum margin criterion [J]. IEEE Transactions on Neural Networks, 2006, 17(1): 157-165. 被引量:1
  • 10Saul L K, Roweis S T. Think globally, fit locally: Unsupervised learning of low dimensional manifolds [J]. Journal of Machine Learning Research, 2003, 4(2): 119-155. 被引量:1

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部