期刊文献+

监督式正交迹比判别投影在图像集人脸识别中的应用 被引量:1

Application of supervised orthogonal trace ratio discriminant projection to image set face recognition
下载PDF
导出
摘要 研究、分析了人脸识别中提取原始数据特征的已有方法,在此基础上给出了一种应用监督式正交迹比判别投影(SOTRDP)的新型特征提取方法,即SOTRDP方法。不同于现有的非监督判别投影(UDP)方法,SOTRDP方法能够同时利用局部信息和类别信息建立相似性矩阵。在利用改进局部切空间对齐(ILTSA)非线性降维的基础上,利用聚类中心或最靠近它的样本作为输入,拓展SOTRDP用于图像集人脸识别。在PIE和Honda/UCSD人脸数据库上的实验结果验证了所提方法的有效性。 The existing feature extraction methods for face recognition were studied and analyzed, and based on this, a novel feature extraction method using supervised orthogonal trace ratio discriminant projection (SOTRDP), called the SOTRDP method for short, was proposed. Unlike the unsupervised discriminant projection (UDP) method, this new method can simultaneously use both local information and class information to model the similarity of the data. Based on the improved local tangent space alignment (ILTSA) nonlinear dimensionality reduction, the SOTRDP was extended to image set face recognition application by using the clustering centers as input. The results of the experiments on the PIE and Honda/UCSD image set face databases demonstrate the effectiveness of the proposed face recognition method.
作者 张强 蔡云泽
出处 《高技术通讯》 CAS CSCD 北大核心 2014年第7期684-689,共6页 Chinese High Technology Letters
基金 国家自然科学基金(61004088) 上海市基础研究重点(09JC1408000)资助项目
关键词 非监督判别投影(UDP) 监督式正交迹比判别投影(SOTRDP) 改进局部切空间对齐(ILTSA) 图像集人脸识别 unsupervised discriminant projection (UDP), supervised orthogonal trace ratio discriminant projection (SOTRDP), improved local tangent space alignment (ILTSA), image set face recognition
  • 相关文献

参考文献16

  • 1Turk M A, Pentland A P. Face Recognition Using Eigen- faces. Proceedings of IEEE Conference on Computer Vi- sion and Pattern Recognition, Maui, USA, 1991. 586- 591. 被引量:1
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. et al. Fisherfaces: Recognition Using Class-Specific Linear Pro- jection. IEEE Transactior on Pattern Analysis and Ma- chine Intelligelwe, 1997, 19(7) : 711-720. 被引量:1
  • 3Roweis S T, Saul L K. Nonlinear Dimensionality Reduc- tion by Locally Linear Embedding. Science, 2000, 290 ( 5500 ) :2323-2326. 被引量:1
  • 4Tenenbaum J B, Silva V, Langford J C. A Global Geo- metric Framework for Nonlinear Dimensionality Reduc- tion. Science, 2000, 290(5500):2319-2323. 被引量:1
  • 5He X F, Yan S C, Hu Y X, et al. Face Recognition Using Laplacianfaces. IEEE Transactior on Pattern Analysis and Machine Intelligence, 2005, 27 ( 3 ) : 328- 340. 被引量:1
  • 6Li B, Huang D S, Wang C, et al. Feature extraction using constrained maximum variance mapping, Pattern Recognition, 2008, 41 ( 11 ) : 3287-3294. 被引量:1
  • 7Li B, Zheng C, Huang D. Locally linear discriminant embedding: an efficient method for face recognition, Pat- tern Recognition, 2008, 41 (12) : 3813-3821. 被引量:1
  • 8Yang J, Zhang D, Yang J Y, et al. Globally maximizing, locally minimizing: unsupervised discriminant projection with application to face and palm biometrics. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2007, 29(4): 650-664. 被引量:1
  • 9Wang T, Shi P. Kernel grassmannian distances and dis- criminant analysis for face recognition from image sets. Pattern Recognition Letters, 2009, 30( 13 ) : 1161-1165. 被引量:1
  • 10Mehrtash T H, Conrad S, Sareh S, et al. Graph embed- ding discriminant analysis on grassmannian manifolds for improved image set matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition(CVPR), Providence, USA, 2011. 2705-2712. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部