Inertial navigation represents a unique method of navigation,in which there is no dependency on external sources of information.As opposed to other position fixing navigation techniques,inertial navigation performs th...Inertial navigation represents a unique method of navigation,in which there is no dependency on external sources of information.As opposed to other position fixing navigation techniques,inertial navigation performs the navigation in a relative sense with respect to the initial navigation state of the moving platform.Hence,inertial navigation systems are not prone to jamming,or spoofing.Inertial navigation systems have developed vastly,from their occurrence in the 1940s up to date.The accuracy of the inertial sensors has improved over time,making inertial sensors sufficient in terms of size,weight,cost,and accuracy for navigation and guidance applications.Within the past few years,inertial sensors have developed from being purely mechanical into incorporating various technologies and taking advantage of numerous physical phenomena,from which the dynamic forces exerted on a moving body could be computed accurately.Besides,the evolution of inertial navigation scheme involved the evolution from stable-platform inertial navigation system,which were mechanically complicated,to computationally demanding strap-down inertial navigation systems.Optical sensory technologies have provided highly accurate inertial sensors,at smaller sizes.Besides,the vibratory inertial navigation technologies enabled the production of Micro-electro-machined inertial sensors that are extremely low-cost,and offer extremely low size,weight and power consumption,making them suitable for a wide range of day-to-day navigation applications.Recently,advanced inertial sensor technologies have been introduced to the industry such as nuclear magnetic resonance technology,coldatom technology,and the reintroduction of fluid-based inertial sensors.On another note,inertial sensor errors constitute a huge research aspect in which it is intended for inertial sensors to reach level in which they could operate for substantially long operation times in the absence of updates from aiding sensors,which would be a huge leap.Inertial sensors error modeling technique展开更多
研制了一种可用于油藏监测的3分量光纤加速度传感器。该传感器通过3个单方向传感单元分别获得3个正交方向上的被测加速度分量,每个传感单元是一质量-弹簧系统,通过波纹管与顺变材料构成复合弹性体,并采用光纤干涉结构将被测加速度通过...研制了一种可用于油藏监测的3分量光纤加速度传感器。该传感器通过3个单方向传感单元分别获得3个正交方向上的被测加速度分量,每个传感单元是一质量-弹簧系统,通过波纹管与顺变材料构成复合弹性体,并采用光纤干涉结构将被测加速度通过解调光纤中的相位变化反映出来。实验数据表明,该加速度传感器具有良好的线性度、一致性和稳定性。系统的工作频带范围为10 Hz至800 Hz,其轴向灵敏度为38 dB re rad/g,交叉法去敏度达到32 dB re rad/g,最小可检测加速度为39.3μg/Hz1/2。展开更多
基金Dr.Naser El-Sheimy research funds from NSERC and Canada Research Chairs programs(Grant No.RT691875).
文摘Inertial navigation represents a unique method of navigation,in which there is no dependency on external sources of information.As opposed to other position fixing navigation techniques,inertial navigation performs the navigation in a relative sense with respect to the initial navigation state of the moving platform.Hence,inertial navigation systems are not prone to jamming,or spoofing.Inertial navigation systems have developed vastly,from their occurrence in the 1940s up to date.The accuracy of the inertial sensors has improved over time,making inertial sensors sufficient in terms of size,weight,cost,and accuracy for navigation and guidance applications.Within the past few years,inertial sensors have developed from being purely mechanical into incorporating various technologies and taking advantage of numerous physical phenomena,from which the dynamic forces exerted on a moving body could be computed accurately.Besides,the evolution of inertial navigation scheme involved the evolution from stable-platform inertial navigation system,which were mechanically complicated,to computationally demanding strap-down inertial navigation systems.Optical sensory technologies have provided highly accurate inertial sensors,at smaller sizes.Besides,the vibratory inertial navigation technologies enabled the production of Micro-electro-machined inertial sensors that are extremely low-cost,and offer extremely low size,weight and power consumption,making them suitable for a wide range of day-to-day navigation applications.Recently,advanced inertial sensor technologies have been introduced to the industry such as nuclear magnetic resonance technology,coldatom technology,and the reintroduction of fluid-based inertial sensors.On another note,inertial sensor errors constitute a huge research aspect in which it is intended for inertial sensors to reach level in which they could operate for substantially long operation times in the absence of updates from aiding sensors,which would be a huge leap.Inertial sensors error modeling technique
文摘研制了一种可用于油藏监测的3分量光纤加速度传感器。该传感器通过3个单方向传感单元分别获得3个正交方向上的被测加速度分量,每个传感单元是一质量-弹簧系统,通过波纹管与顺变材料构成复合弹性体,并采用光纤干涉结构将被测加速度通过解调光纤中的相位变化反映出来。实验数据表明,该加速度传感器具有良好的线性度、一致性和稳定性。系统的工作频带范围为10 Hz至800 Hz,其轴向灵敏度为38 dB re rad/g,交叉法去敏度达到32 dB re rad/g,最小可检测加速度为39.3μg/Hz1/2。