期刊文献+

基于深度卷积神经网络的人体动作识别 被引量:21

Human activity recognition based on deep convolutional neural networks
原文传递
导出
摘要 针对人体动作识别问题,提出一种基于智能手机加速传感器数据并运用深度卷积神经网络进行分类识别的方法,可以有效地分类人体的走、坐、躺、跑、站五类动作.该方法模型由输入层、两层卷积层、两层池化层、一层全连接层和输出层组成,使用滑动窗口折叠法将传感器数据变换为类似于三通道的RGB图像格式,自动提取加速传感器数据的特征,对各个动作进行分类,免去了传统方法繁琐的特征提取工程.该方法在Actitracker开源数据库上达到了0.912 6的识别率,验证了该方法的可行性. Focusing on issues of human activity recognition,a classification and recognition method was proposed,which was based on the data from accelerometer sensor of smart phone and utilizes the deep convolutional neural networks.The proposed method was able to effectively recognize 5types of human activities,including walking,sitting,lying down,jogging and standing.The model consisted of one input layer,two convolutional layers,two max-pooling layers,one fully connected layer and one output layer.The sliding-window folding method was used to transform accelerometer data into the format which was similar to three-channel RGB image.The features of the accelerometer data could be extracted automatically so as to classify each activity,avoiding tedious work of traditional feature extraction methods.The proposed method achieves accuracy of 0.9126 using Actitracker public dataset,which shows its feasibility.
作者 吴军 肖克聪 Wu Jun;Xiao Kecong(Institute of Network Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第S1期190-194,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家国际科技合作与交流专项资助项目(2013DFE13130)
关键词 动作识别 卷积神经网络 深度学习 机器学习 加速传感器 activity recognition convolutional neural networks deep learning machine learning accelerometers
  • 相关文献

参考文献1

二级参考文献10

  • 1Krishnan N C.A Computational Framework for Wearable Accelerometer Based Activity and Gesture Recognition[D].USA:Arizona State University,2010:14-25. 被引量:1
  • 2Lustrek M,Kaluza B.Fall detection and activity recognition with machine learning[J].Informatics(Ljubljana),2009,33(2):205-212. 被引量:1
  • 3Sensors Overview_Android Developers.(2014-03-30)[2014-04-20].http://developer.android.com/guide/topics/sensors/sensors_verview.html. 被引量:1
  • 4Incel O D,Kose M,ErsoyIncel C.A Review and Taxonomy of Activity Recognition on Mobile Phones[J].Springer BioNanoScience Journal,2013,3(2):145-171. 被引量:1
  • 5Lane N D,Miluzzo E,Lu H,et al.A survey of mobile phone sensing[J].Communications Magazine,IEEE,2010,48(9):140-150. 被引量:1
  • 6Hsu Chih-Wei,Chang Chih-Chung,Lin Chih-Jen.A practical guide to support vector classification[J].Bioinformatics,2010,1(1):1-16. 被引量:1
  • 7Chang Chih-Chung,Lin Jen.LIBSVM:A Library for Support Vector Machines.(2014-04-01)[2014-04-25].http://www.csie.ntu.edu.tw/~cjlin/libsvm. 被引量:1
  • 8王昌喜,杨先军,徐强,马祖长,孙怡宁.基于三维加速度传感器的上肢动作识别系统[J].传感技术学报,2010,23(6):816-819. 被引量:27
  • 9吴青,赵雄.一类新样条光滑支持向量机[J].西安邮电大学学报,2013,18(6):68-74. 被引量:11
  • 10王忠民,曹栋.基于蚁群算法的行为识别特征优选方法[J].西安邮电大学学报,2014,19(1):73-77. 被引量:21

共引文献31

同被引文献78

引证文献21

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部