针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基...针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基于深度支持向量描述(deep support vector data description,Deep SVDD)和调制识别的AD方法。仿真及实验结果表明:相比于经典的单分类检测算法,该方法检测性能和实时性明显提升,且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证,具有很高应用价值。展开更多
支持向量数据描述(Support Vector Data Description,SVDD)被认为是用于异常检测的典型方法。众所周之,参数的设置和特征的品质是影响SVDD性能的两个关键点。将SVDD的特征提取和参数选择问题结合在一起,提出了一种基于模拟退火的SVDD特...支持向量数据描述(Support Vector Data Description,SVDD)被认为是用于异常检测的典型方法。众所周之,参数的设置和特征的品质是影响SVDD性能的两个关键点。将SVDD的特征提取和参数选择问题结合在一起,提出了一种基于模拟退火的SVDD特征提取和参数选择方法(SA-SVDD)。在模拟退火的过程中,自动选择最优核参数、折衷参数以及抽取特征的维数。在UCI基准数据集上的实验结果表明,与传统的参数选择方法相比,SA-SVDD取得了更优的性能。展开更多
现代工业过程往往具有多个运行模态,并且单一模态中的变量服从高斯与非高斯混合的复杂数据分布。针对多模态与复杂数据分布问题,基于局部离群概率(local outlier probability,LOOP)算法与支持向量数据描述(support vector data descript...现代工业过程往往具有多个运行模态,并且单一模态中的变量服从高斯与非高斯混合的复杂数据分布。针对多模态与复杂数据分布问题,基于局部离群概率(local outlier probability,LOOP)算法与支持向量数据描述(support vector data description,SVDD)算法,提出了一种名为MSVDD(multiple support vector data description,MSVDD)的多模态过程监控方法。首先,考虑到不同模态之间存在差异,利用差分策略以及局部离群概率算法对多模态数据进行聚类。其次,在每个单一模态下分别建立SVDD模型。然后,通过计算测试样本对每个单一模态的离群概率选择合适的模型进行过程监控。最后,在Tennessee Eastman(TE)平台上进行仿真测试以验证提出方法的可行性与有效性。展开更多
文摘针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基于深度支持向量描述(deep support vector data description,Deep SVDD)和调制识别的AD方法。仿真及实验结果表明:相比于经典的单分类检测算法,该方法检测性能和实时性明显提升,且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证,具有很高应用价值。
文摘支持向量数据描述(Support Vector Data Description,SVDD)被认为是用于异常检测的典型方法。众所周之,参数的设置和特征的品质是影响SVDD性能的两个关键点。将SVDD的特征提取和参数选择问题结合在一起,提出了一种基于模拟退火的SVDD特征提取和参数选择方法(SA-SVDD)。在模拟退火的过程中,自动选择最优核参数、折衷参数以及抽取特征的维数。在UCI基准数据集上的实验结果表明,与传统的参数选择方法相比,SA-SVDD取得了更优的性能。
文摘现代工业过程往往具有多个运行模态,并且单一模态中的变量服从高斯与非高斯混合的复杂数据分布。针对多模态与复杂数据分布问题,基于局部离群概率(local outlier probability,LOOP)算法与支持向量数据描述(support vector data description,SVDD)算法,提出了一种名为MSVDD(multiple support vector data description,MSVDD)的多模态过程监控方法。首先,考虑到不同模态之间存在差异,利用差分策略以及局部离群概率算法对多模态数据进行聚类。其次,在每个单一模态下分别建立SVDD模型。然后,通过计算测试样本对每个单一模态的离群概率选择合适的模型进行过程监控。最后,在Tennessee Eastman(TE)平台上进行仿真测试以验证提出方法的可行性与有效性。