期刊文献+

多SVDD模型的多模态过程监控方法 被引量:9

Multimode processes monitoring method via multiple SVDD model
下载PDF
导出
摘要 现代工业过程往往具有多个运行模态,并且单一模态中的变量服从高斯与非高斯混合的复杂数据分布。针对多模态与复杂数据分布问题,基于局部离群概率(local outlier probability,LOOP)算法与支持向量数据描述(support vector data description,SVDD)算法,提出了一种名为MSVDD(multiple support vector data description,MSVDD)的多模态过程监控方法。首先,考虑到不同模态之间存在差异,利用差分策略以及局部离群概率算法对多模态数据进行聚类。其次,在每个单一模态下分别建立SVDD模型。然后,通过计算测试样本对每个单一模态的离群概率选择合适的模型进行过程监控。最后,在Tennessee Eastman(TE)平台上进行仿真测试以验证提出方法的可行性与有效性。 Modern industrial processes always have multiple operation modes. Besides, the variable in the single mode often obey complex data distribution which is a mix of Gaussian distribution and non-Gaussian distribution. Considering the problems of both multimode and complex data distribution, a new multimode processes monitoring method called multiple SVDD is proposed based on the local outlier probability algorithm and the support vector data description algorithm. First, given that the differences exist between different modes, the clustering is conducted by employing the differential strategy and the local outlier probability algorithm. Second, the SVDD algorithm is used to build the monitoring model in each single mode. And then, the most suitable model is selected for each testing sample through calculating the outlier probability. Finally, the feasibility and efficiency are proved through the Tennessee Eastman process simulation.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第11期4526-4533,共8页 CIESC Journal
基金 国家自然科学基金项目(61374140)~~
关键词 多模态 复杂数据分布 局部离群概率 支持向量数据描述 过程监控 multimode complex data distribution local outlier probability SVDD processes monitoring
  • 相关文献

参考文献22

  • 1Kruger U, Dimitriadis G. Diagnosis of process faults in chemical systems using a local partial least squares approach [J]. AIChE J., 2008, 54: 2581-2596. 被引量:1
  • 2Lee J M, Yoo C K, Choi S W, Vanrolleghem P A, Lee I B. Nonlinear process monitoring using kernel principal component analysis [J]. Chem. Eng. Sci., 2004, 59: 223-234. 被引量:1
  • 3Ge Z Q, Song Z H. Mixture Bayesian regularization method of PPCA for multi-mode process monitoring [J]. AIChE J., 2010, 56: 2838-2849. 被引量:1
  • 4Jin H D, Lee Y H, Han C H. Robust recursive principle component analysis modeling for adapting monitoring [J]. Ind. Eng. Chem. Res., 2006, 45: 696-703. 被引量:1
  • 5Zhao S J, Zhang J, Xu Y M. Monitoring of processes with multiple operation modes through multiple principle component analysis models [J]. Ind. Eng. Chem. Res., 2004, 43: 7025-7035. 被引量:1
  • 6Ma H H, Hu Y, Shi H B. Fault detection and identification based on the neighborhood standardized local outlier factor method [J]. Ind. Eng. Chem. Res., 2013, 52: 2389-2402. 被引量:1
  • 7Tan S, Wang F L, Peng J, Chang Y Q, Wang S. Multimode process monitoring based on mode identification [J]. Ind. Eng. Chem. Res., 2012, 51: 374-388. 被引量:1
  • 8Liu J, Chen D S. Fault detection and identification using modified Bayesian classification on PCA subspace [J]. Ind. Eng. Chem. Res., 2009, 48: 3059-3077. 被引量:1
  • 9Ge Z Q, Song Z H. Multimode process monitoring based on Bayesian method [J]. Journal of Chemometrics, 2009, 23: 636-650. 被引量:1
  • 10Xie X, Shi H B. Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace [J]. Chinese J. Chem. Eng., 2012, 20:1174-1179. 被引量:1

同被引文献82

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部