期刊文献+

依特征频率的安卓恶意软件异常检测的研究 被引量:7

Android malware outlier detection based on feature frequency
下载PDF
导出
摘要 Android系统由于开源性和可移植性等优点,成为市场占有率最高的移动操作系统。针对Android的各种攻击也层出不穷,面向Android的恶意软件检测已成为近些年移动安全领域非常重要的一个环节。面临的问题包括恶意软件收集困难,异常样本和正常样本比例不平衡。为了有效应对上述问题,提出了Droid-Saf框架,框架中提出了一种挖掘数据隐含特征的数据处理方案;把样本特征包含的隐藏信息当作新的特征;建模时将样本特征融入算法当中,建立动态的松弛变量。应用静态分析方法反编译apk,用改进的svdd单分类器分类,克服了恶意软件检测系统中非正常软件收集困难的不足,降低了异常检测的漏报率和误判率。实验结果验证了该算法的有效性和适用性。 Due to the advantages of open source and portability,Android has become a mobile OS with the largest market share.Various attacks toward Android also emerge in endlessly,the Android-oriented detection for malwares has become a quite important link recently in the field of mobile safety.The problems to be faced include difficult collection of malicious software,imbalanced proportion of the abnormal samples and normal samples.In order to effectively overcome the above difficulties,Droid-Saf framework was proposed,a data processing scheme revealing the implicit characteristics of data was proposed in the framework;the hidden information contained in the sample was treated as a new feature;in modeling,the sample features were integrated into the algorithm and dynamic slack variables were established.Static analytic method was applied to decompile apk,the improved svdd single classifier was used for classification,the deficiency of difficult collection of abnormal software in the system for detecting malicious software was overcome,the rate of missing report and the misjudgment rate of abnormal detection were lowered.The Experimental results verified the effectiveness and applicability of the algorithm.
作者 张玉玲 尹传环 ZHANG Yuling;YIN Chuanhuan(School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China)
出处 《智能系统学报》 CSCD 北大核心 2018年第2期168-173,共6页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61105056)
关键词 安卓系统 恶意软件 数据挖掘 异常检测 SVDD 隐含特征 单分类器 特征频率 Android system malware data mining abnormal detection svdd implicit characteristics single classifier feature frequency
  • 相关文献

参考文献3

二级参考文献18

  • 1潘志松,罗隽,倪桂强,胡谷雨.基于支持向量描述的人工免疫检测算法[J].哈尔滨工程大学学报,2006,27(B07):302-306. 被引量:2
  • 2[1]D Zamboni,E H Spafford.A prototype for a distributed intrusion detection system.Department of Computer Science,Purdue University,Tech Rep:TR98-06,1998 被引量:1
  • 3[2]S Forrest,S A Hofmeyr,A Dayaji.Computer Immunology.Communications of the ACM,1997,40(10):88-96 被引量:1
  • 4[3]A Dayaji,S Hofmeyr,S Forrest.Principles of a computer immune system.New Security Paradigms Workshop,Greece,1997 被引量:1
  • 5[4]C Warrender,S Forrest,B Pearlmutter.Detecting intrusion using system calls:Alternative data models.http://www.cs.unm.edu/~forrest/publications/oakland-with-cite.pdf,2000 被引量:1
  • 6[5]S Forrest,S A Hofmeyr,T A Longstaff.A sense of self for Unix processes.Los Alamitos:IEEE Computer Society Press,1996.120-128 被引量:1
  • 7[6]M Bishop.A standard audit trail format.The 18th National Information Systems Security Conference,Baltimore,l995 被引量:1
  • 8[7]W Lee,S J Stolfo,K W Mok.A data mining framework for building intrusion detection models.The 1999 IEEE Symp on Security and Privacy,Berkely,California,1999 被引量:1
  • 9[8]S Haykin.Neural Networks-A Comprehensive Foundation.Second Edition.Beijing:Tsinghua University Press,2001 被引量:1
  • 10[9]M J T David.One-class classification:[Ph D dissertation].Delft:ICT Group,1999 被引量:1

共引文献10

同被引文献76

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部