This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, ba...This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.展开更多
In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well a...In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well as the nonconservative system with dynamic constraint are established within fractional difference operators of Riemann-Liouville type from the view of time scales. Firstly,time scale calculus and fractional calculus are reviewed.Secondly,with the help of the properties of time scale calculus,discrete Lagrange equation of the nonconservative system within fractional difference operators of Riemann-Liouville type is presented. Thirdly,using the Lagrange multipliers,discrete Lagrange equation of the nonconservative system with dynamic constraint is also established.Then two special cases are discussed. Finally,two examples are devoted to illustrate the results.展开更多
This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding diffe...This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding difference scheme. This approach makes it possible to devise techniques for solving the Lagrange Maxwell equations in differences which correspond to mechanico-electrical systems,by adapting existing differential equations.In particular,it obtains a new systematic method to determine both the one-parameter Lie groups and the discrete Noether conserved quantities of Lie point symmetries for mechanico-electrical systems.As an application,it obtains the Lie point symmetries and the conserved quantities for the difference equation of a model that represents a capacitor microphone.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 10672143)
文摘This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.
基金supported by the National Natural Science Foundation of China(Nos.11802193, 11572212,11272227)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB130005)+1 种基金the Science Research Foundation of Suzhou University of Science and Technology(331812137)Natural Science Foundation of Suzhou University of Science and Technology
文摘In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well as the nonconservative system with dynamic constraint are established within fractional difference operators of Riemann-Liouville type from the view of time scales. Firstly,time scale calculus and fractional calculus are reviewed.Secondly,with the help of the properties of time scale calculus,discrete Lagrange equation of the nonconservative system within fractional difference operators of Riemann-Liouville type is presented. Thirdly,using the Lagrange multipliers,discrete Lagrange equation of the nonconservative system with dynamic constraint is also established.Then two special cases are discussed. Finally,two examples are devoted to illustrate the results.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10672143 and 60575055)State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences+1 种基金Tang Yi-Fa acknowledges the support under Sabbatical Program (SAB2006-0070) of the Spanish Ministry of Education and ScienceJimnez S and Vzquez L acknowledge support of the Spanish Ministry of Education and Science (Grant No MTM2005-05573)
文摘This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding difference scheme. This approach makes it possible to devise techniques for solving the Lagrange Maxwell equations in differences which correspond to mechanico-electrical systems,by adapting existing differential equations.In particular,it obtains a new systematic method to determine both the one-parameter Lie groups and the discrete Noether conserved quantities of Lie point symmetries for mechanico-electrical systems.As an application,it obtains the Lie point symmetries and the conserved quantities for the difference equation of a model that represents a capacitor microphone.