期刊文献+

Lagrange equations of nonholonomic systems with fractional derivatives 被引量:7

Lagrange equations of nonholonomic systems with fractional derivatives
下载PDF
导出
摘要 This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results. This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期25-29,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 10672143)
关键词 fractional derivative d'Alembert-Lagrange principle Lagrange equation nonholonomic system fractional derivative, d'Alembert-Lagrange principle, Lagrange equation, nonholonomic system
  • 相关文献

参考文献12

  • 1Naber M 2004 J. Math. Phys. 45 3339. 被引量:1
  • 2Zaslavsky G M and Edelman M A 2004 Physica D 193 128. 被引量:1
  • 3Agrawal O 2004 Nonlinear Dynamics 38 323. 被引量:1
  • 4Eqab M R, Tareg S A H and Rousan A 2004 Int. J. Mod. Phys. A 19 3083. 被引量:1
  • 5Klimek M 2002 Czechoslovak J. Phys. 52 1247. 被引量:1
  • 6Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: Wiley-Interscience Publication). 被引量:1
  • 7Samko S G, Anatoly A K and Oleg I M 1993 Fractional Integrals and Derivatives (Yverdon: Gordon and Breach Science Publishers). 被引量:1
  • 8Riewe F 1996 Phys. Rev. E 53 1890. 被引量:1
  • 9Riewe F 1997 Phys. Rev. E 55 3581. 被引量:1
  • 10Agrawal O P 2002 J. Math. Anal. Appl. 272 368. 被引量:1

同被引文献92

  • 1FU JingLi1,LI XiaoWei2,LI ChaoRong1,ZHAO WeiJia3 & CHEN BenYong4 1 Institute of Mathematical Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China,2 Department of Physics,Shangqiu Normal University,Shangqiu 476000,China,3 Department of Mathematics,Qingdao University,Qingdao 266071,China,4 Faculty of Mechanical Engineering & Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China.Symmetries and exact solutions of discrete nonconservative systems[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1699-1706. 被引量:3
  • 2FU JingLi1, CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China,2 Department of Mechanics, Shanghai University, Shanghai 200072, China,3 Faculty of Mechanical-Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China.Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices[J].Science China(Physics,Mechanics & Astronomy),2010,53(3):545-554. 被引量:11
  • 3刘端.NOETHER’S THEOREM AND ITS INVERSE OF NONHOLONOMIC NONCONSERVATIVE DYNAMICAL SYSTEMS[J].Science China Mathematics,1991,34(4):419-429. 被引量:17
  • 4郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011. 被引量:25
  • 5Oldham K B and Spanier J. The Fractional Calculus[M]. San Diego: Academic Press, 1974. 被引量:1
  • 6Podlubny Igor. Fractional Differential Equations[M]. San Diego: Academic Press, 1999. 被引量:1
  • 7Riewe F. Nonconservative Lagrangian and Hamihonian mechanics[J]. Physical Review E, 1996, 53(2): 1890-1899. 被引量:1
  • 8Riewe F. Mechanics with fractional derivatioves[J]. Physical Review E, 1997, 55(3): 3581-3592. 被引量:1
  • 9Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems [J]. Journal of Mathematical Analysis and Applications, 2002, 272: 368-379. 被引量:1
  • 10Agrawal O P. Fractional variational calculus in terms of Riesz fractional derivatives [J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40: 6287-6303. 被引量:1

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部