Ba0.5Sr0.5Co0.5Fe0.2O3-σ(BSCF), a new cathode material for solid oxide fuel cell (SOFC), was synthesized by polyacrylicacid (PAA) method. The lattice structures of samples calcined at different temperatures were char...Ba0.5Sr0.5Co0.5Fe0.2O3-σ(BSCF), a new cathode material for solid oxide fuel cell (SOFC), was synthesized by polyacrylicacid (PAA) method. The lattice structures of samples calcined at different temperatures were characterized by XRD, Shrinkage, porosity and pore size of the porous BSCF as a function of sintering temperature were investigated. It was found that the cubic perovskite structure could be formed after calcination at 800 ℃ for 2 h, but not well crystallized as seen from some unknown phases, and the pure cubic perovskite structure was formed after calcination at 1150 ℃ for 2 h. The panicle size of BSCF was less than 1-2 μm. The shrinkage of the porous BSCF increased with sintering temperature, but the opposite was true for the porosity. After sintering at 1100 ℃ for 4 h, the porous BSCF was still in an appropriate structure, with porosity of 29% and electrical conductivity above 400 S·cm^-1.展开更多
It was prepared by glycine-nitrate process (GNP) method for a novel composite material La0.7Sr0.3Cr0.5Mn0.5O3-δ-Ce0.8Ca0.2O2-δ (LSCM-CDC) used for anode of intermediate temperature solid oxide fuel cell (ITSOFC). Th...It was prepared by glycine-nitrate process (GNP) method for a novel composite material La0.7Sr0.3Cr0.5Mn0.5O3-δ-Ce0.8Ca0.2O2-δ (LSCM-CDC) used for anode of intermediate temperature solid oxide fuel cell (ITSOFC). The microstructure and properties of composite anode LSCM-CDC were measured via X-ray diffraction (XRD), scanning electron microscopy (SEM), AC impedance and four-probe direct current methods. Fluorite-perovskite compounded phase structure was obtained after being sintered at 1400 ℃ for 15 h, the optimum composition of the composite anode of LSCM and CDC was 7 to 3 at molar ratio. At 850 ℃, the electronic conductivity was 6.49 S·cm-1 in air and 1 S·cm-1 in the reduction atmosphere, respectively. The AC impedance spectra with two arcs showed that LSCM-CDC had low ionic conductivity, which was about two orders of magnitude lower than the electronic conductivity. LSCM-CDC composite anode was stable under different temperatures in pure methane gas with good catalytic performance, which indicated that the composite was a promising anode for ITSOFC.展开更多
文摘Ba0.5Sr0.5Co0.5Fe0.2O3-σ(BSCF), a new cathode material for solid oxide fuel cell (SOFC), was synthesized by polyacrylicacid (PAA) method. The lattice structures of samples calcined at different temperatures were characterized by XRD, Shrinkage, porosity and pore size of the porous BSCF as a function of sintering temperature were investigated. It was found that the cubic perovskite structure could be formed after calcination at 800 ℃ for 2 h, but not well crystallized as seen from some unknown phases, and the pure cubic perovskite structure was formed after calcination at 1150 ℃ for 2 h. The panicle size of BSCF was less than 1-2 μm. The shrinkage of the porous BSCF increased with sintering temperature, but the opposite was true for the porosity. After sintering at 1100 ℃ for 4 h, the porous BSCF was still in an appropriate structure, with porosity of 29% and electrical conductivity above 400 S·cm^-1.
基金the National Natural Science Foundation of China (50204007)the Talent Foundation of Yunnan Prov-ince (2005PY01-33)Program for New Century Excellent Talents in University (NCET-07-0387)
文摘It was prepared by glycine-nitrate process (GNP) method for a novel composite material La0.7Sr0.3Cr0.5Mn0.5O3-δ-Ce0.8Ca0.2O2-δ (LSCM-CDC) used for anode of intermediate temperature solid oxide fuel cell (ITSOFC). The microstructure and properties of composite anode LSCM-CDC were measured via X-ray diffraction (XRD), scanning electron microscopy (SEM), AC impedance and four-probe direct current methods. Fluorite-perovskite compounded phase structure was obtained after being sintered at 1400 ℃ for 15 h, the optimum composition of the composite anode of LSCM and CDC was 7 to 3 at molar ratio. At 850 ℃, the electronic conductivity was 6.49 S·cm-1 in air and 1 S·cm-1 in the reduction atmosphere, respectively. The AC impedance spectra with two arcs showed that LSCM-CDC had low ionic conductivity, which was about two orders of magnitude lower than the electronic conductivity. LSCM-CDC composite anode was stable under different temperatures in pure methane gas with good catalytic performance, which indicated that the composite was a promising anode for ITSOFC.