期刊文献+

静电纺丝法制备La2CuO4纳米管阴极材料及其电化学性质研究 被引量:3

Electrochemical Performance of La_2CuO_4 Nanotube Materials Prepared via Electrospinning Method
下载PDF
导出
摘要 采用静电纺丝法制备了一维管状中温固体氧化物燃料电池(ITSOFC)阴极材料La2CuO4。利用XRD、TG-DTA、FT-IR和SEM对材料的结构和微观形貌进行分析。研究表明,700℃烧结2 h得到平均直径150纳米、形貌均一的La2CuO4纳米管。900℃烧结0.5 h得到纳米管间连接充分并与电解质紧密接触的纤维电极。利用交流阻抗技术对电极的性能进行研究发现,La2CuO4纳米管阴极材料具有比粉体材料更优越的电极性能。纳米管阴极在700℃的极化电阻为1.03Ω·cm2,而同一组成粉体电极的极化电阻为1.61Ω·cm2;氧分压测试结果显示纳米管电极反应的速率控制步骤为电荷转移过程。 La2CuO4 nanotubes are successfully synthesized by electro-spinning technology. The structure and morphology of the materials are characterized by XRD, TG-DTA and SEM, respectively. The results show that La2CuO4 nanotubes with an average diameter of 150 nm are obtained after sintering at 700℃ for 2 h. The La2CuO4 nanotube forms sufficient connection with each other, and good contact with the electrolyte after sintering at 900 ℃ for 0.5 h. Comparing the results obtained by Electrochemical Impedance Spectroscopy (EIS), it is clearly observed that the nanotube cathode exhibits superior performance than the powder cathode. The area specific resistance (ASR) of the nanotube cathode is 1.03 Ω. cm2 at 700℃ in air, whereas for the powder one with the same composition, the ASR is 1.61 Ω .cm2. The oxygen partial pressure measurement indicates that the charge transfer process is the rate-limiting step of the nanotube electrode reactions.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2014年第4期757-762,共6页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.51072048,51102083) 黑龙江省杰出青年科学基金(JC201211) 黑龙江省自然科学基金(B201107)资助项目
关键词 La2CuO4纳米管 中温固体氧化物燃料电池(ITSOFC) 阴极材料 电极反应 La2CHO4 nanotubes Intermediate temperature solid oxide fuel cell (ITSOFC) cathode materials electrode reaction
  • 相关文献

参考文献25

  • 1Liu M L,Lynch M E,Blinn K,et al.Mate rials today,2011,14(11):534-546. 被引量:1
  • 2Zhou W,Ran R,Shao Z P.J.Power Sources,2009,192:231-246. 被引量:1
  • 3Huang J B,Xie F C,Wang C,et al.Int.J.Hydrogen Energy,2012,37:877-883. 被引量:1
  • 4Tietz F,Mai A,Stver D.Solid State Ionics,2008,179:1509-1515. 被引量:1
  • 5Kivi I,Mller P,Kurig H,et al.Electrochem.Commun.,2008,10:1455-1458. 被引量:1
  • 6Zhu X B,Ding D,Li Y Q,et al.Int.J.Hydrogen Energy,2013,38:5375-5382. 被引量:1
  • 7Gao Z,Mao Z Q,Wang C,et al.Int.J.Hydrogen Energy,2011,36:7229-7233. 被引量:1
  • 8Ortiz-Vitoriano N,Ruiz de Larramendi I,Ruiz de LarramendiI J,et al.J.Power Sources,2009,192:63-69. 被引量:1
  • 9Suzuki T,Takahashi Y,Hamanoto K,et al.Int.J.HydrogenEnergy,2011,36:10998-11003. 被引量:1
  • 10Sun L P,Zhao H,Li Qiang,et al.Int.J.Hydrogen Energy,2011,36:12555-12560. 被引量:1

同被引文献10

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部