针对ARMA模型建模过程中模型识别和参数估计易受观测值异常点影响问题,构建了同时考虑加性异常点和更新性异常点的ARMA模型.运用基于Gibbs抽样的Markov Chain Monte Carlo贝叶斯方法,估计稳健ARMA模型参数,同步确定观测值中异常点的位置...针对ARMA模型建模过程中模型识别和参数估计易受观测值异常点影响问题,构建了同时考虑加性异常点和更新性异常点的ARMA模型.运用基于Gibbs抽样的Markov Chain Monte Carlo贝叶斯方法,估计稳健ARMA模型参数,同步确定观测值中异常点的位置,辨别异常点类型.并利用我国人口自然增长数据进行仿真分析,研究结果表明:贝叶斯方法能够有效地识别ARMA序列的异常点.展开更多
A system identification method for nonlinear systems with unknown structure is presented using short input-output data. The method simplifies the original NARMAX method. It introduces more general model structures for...A system identification method for nonlinear systems with unknown structure is presented using short input-output data. The method simplifies the original NARMAX method. It introduces more general model structures for nonlinear systems. The group method of data handling (GMDH) method is employed to obtain the model terms and parameters. Effectiveness of the proposed method is illustrated by a typical nonlinear system with unknown structure and deficient input-output data.展开更多
文摘针对ARMA模型建模过程中模型识别和参数估计易受观测值异常点影响问题,构建了同时考虑加性异常点和更新性异常点的ARMA模型.运用基于Gibbs抽样的Markov Chain Monte Carlo贝叶斯方法,估计稳健ARMA模型参数,同步确定观测值中异常点的位置,辨别异常点类型.并利用我国人口自然增长数据进行仿真分析,研究结果表明:贝叶斯方法能够有效地识别ARMA序列的异常点.
基金This work was supported by the Teaching and Research Award Program for Outstanding Young Teacher in Higher Education Institute of MOE,P.R.China (NO. 20010248)
文摘A system identification method for nonlinear systems with unknown structure is presented using short input-output data. The method simplifies the original NARMAX method. It introduces more general model structures for nonlinear systems. The group method of data handling (GMDH) method is employed to obtain the model terms and parameters. Effectiveness of the proposed method is illustrated by a typical nonlinear system with unknown structure and deficient input-output data.