期刊文献+

基于Logistic和ARMA模型的过程报警预测 被引量:9

Process alarm prognosis based on Logistic and ARMA models
下载PDF
导出
摘要 提出了一种基于Logistic回归模型和ARMA模型相结合的过程报警事件预测方法,从历史数据中提取过程报警事件序列,并分解成报警状态及报警状态的持续时间,对应建立Logistic回归模型和ARMA模型分别对其进行预测,最终实现对过程报警事件的预测。通过数值实例分析和工业过程数据进行了验证,表明该方法能够准确地预测过程报警事件。 A Logistic regression and Autoregressive Moving Average(ARMA)model-based approach to process alarm event prognosis is explicitly introduced in this paper.A sequence of process alarm events which includes states and duration of the alarm events can be extracted from historical data before establishing corresponding Logistic regression and ARMA models,thereby well predicting the process alarm events.A numerical example as well as industrial process data is employed to validate the effectiveness of the proposed methods.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第9期2941-2947,共7页 CIESC Journal
关键词 LOGISTIC回归模型 ARMA模型 过程报警事件 预测 Logistic regression models; ARMA models; process alarm events; prognosis
  • 相关文献

参考文献13

  • 1Yang S K.State estimation for predictive maintenance using Kalman filter[J].Reliability Engineering and System Safety,1999,66(1):29-39. 被引量:1
  • 2Juricek B C,Seborg D E,Larimore W E.Predictive monitoring for abnormal situation management[J].Journal of Process Control,2001,11(2):111-128. 被引量:1
  • 3Yang S K.An experiment of state estimation for predictive maintenance using Kalman filter on a DC motor[J].Reliability Engineering and System Safety,2002,75(1):103-111. 被引量:1
  • 4吴琦,罗玉梅,刘红斌,胡德金,徐鸿钧.GRINDING FORCE IN PRECISION MACHINING OF WC-Co COATING BY CUP WHEEL[J].Transactions of Nanjing University of Aeronautics and Astronautics,2007,24(2):134-138. 被引量:5
  • 5Zhang G P,Patuwo B E,Hu M Y.A simulation study of artificial neural networks for nonlinear time-series forecasting[J].Computers&Operations Research,2001,28:381-396. 被引量:1
  • 6胡寿松,张正道.基于神经网络的非线性时间序列故障预报[J].自动化学报,2007,33(7):744-748. 被引量:16
  • 7Ho S L,Xie M.The use of ARIMA models for reliability forecasting and analysis[J].Computer&Industrial Engineering,1998,35(1):213-216. 被引量:1
  • 8Wu Wei,Hu Jingtao,Zhang Jilong.Prognostics of machine health condition using an improved ARIMA-based prediction method//2nd IEEE Conference on Industrial Electronics and Applications.Harbin,China,2007:1062-1067. 被引量:1
  • 9Zheng Xiaoping, Liu Mengting. An overview of accident forecasting methodologies [J]. Journal of Loss Prevention in the Process Industries, 2009, 22:484-491. 被引量:1
  • 10Pham H T, Yang B S. Estimation and forecasting of machine health condition using ARMA/GARCH model [J]. Mechanical Systems and Signal Processing, 2010, 24:546-558. 被引量:1

二级参考文献19

  • 1李大鹏,王惠文.偏最小二乘logistic回归在鄱阳湖洪涝灾害预测中的应用[J].数理统计与管理,2003,22(z1):132-136. 被引量:5
  • 2于立勇,詹捷辉.基于Logistic回归分析的违约概率预测研究[J].财经研究,2004,30(9):15-23. 被引量:96
  • 3袁慧,姚应水,金岳龙.急性白血病危险因素的多元Logistic回归分析[J].中国公共卫生,2004,20(11):1328-1329. 被引量:5
  • 4Worrall F, Wooff D A, Melntrye P. A simple modeling approach for water quality: The example of an estuarine impoundment[J].The Science of the Total Environment,1998,219(1):41-51. 被引量:1
  • 5RichardAJohnson DeanWWichern 陆璇.实用多元统计分析[M].北京:清华大学出版社,2001.545-589. 被引量:17
  • 6Ho S L,Xie M.The use of ARIMA models for reliability forecasting and analysis.Computers & Industrial Engineering,1998,35(1):213-216 被引量:1
  • 7Zhang Z D,Hu S S.Modeling time series based fault prediction for model-unknown nonlinear system.In:Proceedings of the 2nd International Conference on Impulsive Dynamical System and Applications.Wuxi,China,2002.1641-1649 被引量:1
  • 8Wedding D K,Cios K J.Time series forecasting by combining RBF networks,certainty factors,and the Box-Jenkins model.Neurocomputing,1996,10(2):149-168 被引量:1
  • 9Zhang G P,Patuwo B E,Hu M Y.A simulation study of artificial neural networks for nonlinear time-series forecasting.Computers & Operations Research,2001,28(3):381-396 被引量:1
  • 10Cowper M R,Mulgrew B,Unsworth C P.Nonlinear prediction of chaotic signals using a normalized radial basis function network.Signal Processing,2002,82(5):775-789 被引量:1

共引文献33

同被引文献84

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部