期刊文献+

基于自适应动态无偏LSSVM的故障在线监测 被引量:1

Online Fault Monitoring Based on Adaptive Dynamic Non-bias LSSVM
下载PDF
导出
摘要 针对无法建立精确数学模型的非线性动态系统,提出一种基于自适应动态无偏LSSVM的故障在线监测模型。该模型通过改进LSSVM的结构风险形式得到无偏的LSSVM,并能够自适应的选择滑动时间窗的长度。在此基础上根据模型动态变化过程中核函数矩阵的特点设计了基于Cholesky分解的学习算法提高了模型训练效率,实现了非线性系统的在线监测。通过系统输出预测误差的变化,利用Parzen核密度估计方法判断故障的程度。仿真结果表明该故障监测模型在系统正常工作的情况下,能够跟踪系统的动态变化趋势;在系统出现突变故障的情况下,能够快速检测系统故障;在系统出现缓变故障的前提下,能够对系统的故障进行预报。 Aiming at nonlinear dynamic systems having no accurate mathematical model, an online fault monitoring model based on adaptive dynamic non-bias LSSVM was proposed. Through improving the structure risk form of LSSVM, the non-bias LSSVM model was achieved, which could control the size of sliding time window adaptively. Then a new learning algorithm based on the Cholesky factorization was designed according to the character of kernel function matrix in the model's dynamic change process. The model could greatly enhance the training efficiency, so it could online monitor the nonlinear systems. The fault probability could be estimated through Parzen kernel density estimation method based on the change of prediction error. Experimental results indicate the model can track the tendency of nonlinear system when system works well. Also it can rapidly detect the system's fault when a fast abrupt fault occurs, and can predict the fault when system is under the slow variation fault state.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第13期4129-4134,共6页 Journal of System Simulation
基金 国家自然科学基金重点课题(60736026) "教育部新世纪优秀人才支持计划"资助项目
关键词 故障在线检测 故障在线预报 非线性系统 最小二乘支持向量机 online fault detection online fault prediction nonlinear system LSSVM
  • 相关文献

参考文献11

  • 1P K Dash, S R Samantaray, Ganapati Panda. Fault Classification and Section Identification of an Advanced Series-Compensated Transmission Line Using Support Vector Machine [J]. IEEE Transactions on Power Delivery (S0885-8977), 2007, 22(1): 67-73. 被引量:1
  • 2胡良谋,曹克强,徐浩军.基于LS-SVM的电液位置伺服系统多故障诊断[J].系统仿真学报,2007,19(10):2252-2255. 被引量:15
  • 3李千目,许满武,张宏,刘凤玉.基于支持向量基的网络应用层故障检测系统[J].系统仿真学报,2006,18(7):1806-1809. 被引量:15
  • 4S Vijayakumar. Sequential Support Vector Classifiers and Regression [C]// Proceeding of International Conference on Soft Computing, Genova, Italy, 1999. Palazzo Ducale in Genova, Italy, 1999: 610-619. 被引量:1
  • 5Haoran Zhang, Changjiang Zhang, Xiaodong Wang, Xiuling Xu,Xiushan Cai. A New Support Vector Machine and Its Learning Algorithm [C]// Proceeding of the 6th World Congress on Control and Automation, Dalian, China. 2006: 2820-2824. 被引量:1
  • 6Yaakov Engel, Shie Marmor, Ron Meir. Sparse Online Greedy Support Vector Regression [C]// Proceeding of European Conference on Machine Learning. Berlin, Germany: Spring-Verlag, 2002: 84-96. 被引量:1
  • 7Matthias Seeger. Low Rank Updates for the Cholesky Decomposition [R]// Technical Report. Tuebingen, Germany: Max Planck Society, 2005. 被引量:1
  • 8Yeung D Y, Chow C. Parzen-window newwork intrusion detectors[C]// Proceeding of the 16th International Conference on Pattern Recognition, Quebec City, Canada, 2002, 4:385-388. 被引量:1
  • 9胡寿松,张正道.基于神经网络的非线性时间序列故障预报[J].自动化学报,2007,33(7):744-748. 被引量:16
  • 10Narendra K.S, Parthasarathy K. Identification and control of dynamic systems using neural networks [J]. IEEE Transactions on Neural Networks (1045-9227), 1990, 1(1): 4-27. 被引量:1

二级参考文献25

  • 1翟永杰,尚雪莲,韩璞,王东风.SVR在传感器故障诊断中的仿真研究[J].系统仿真学报,2004,16(6):1257-1259. 被引量:24
  • 2李千目,戚湧,张宏,刘凤玉.基于粗糙集神经网络的网络故障诊断新方法[J].计算机研究与发展,2004,41(10):1696-1702. 被引量:28
  • 3李千目,游静,张宏,刘凤玉.一种数据链用户保障策略研究与设计[J].北京航空航天大学学报,2004,30(11):1029-1032. 被引量:9
  • 4杨国桢.飞机液压传动与控制[M].西安:空军工程学院出版社,1997.. 被引量:8
  • 5D Gavalas,D Greenwood,M Ghanbari.Advanced network monitoring applications based on mobile/intelligent agent technology[J].Computer Communications(S1548-7709),2002,8(23):720-730. 被引量:1
  • 6R Tagliaferri,A Eleuteri,M Meneganti,F Barone.Fuzzy min-max neural network:from classification to regression[J].Soft Computing (S1052-5684),2001,14(5):69-76. 被引量:1
  • 7D Randall Wilson,Tony R Martinez.Improved Heterogeneous Distance Functions[J].Journal of Artificial Intelligence Research (S1007-7382),1999,6(1):1-34. 被引量:1
  • 8Srinivas Mukkamala,Andrew H.Sung.Identifying Significant Feature for Network Forensic Analysis Using Artificial Intelligent Techniques[J].Internation Journal of Digital Evidence(S1482-7569),2003,1(4):543-568. 被引量:1
  • 9Asa Ben-Hur,David Horn,Hava T.Siegelmann.Support Vector Clustering[J].Journal of Machine Learning Research(S0087-4582),2001,25(2):125-137. 被引量:1
  • 10Henrik Niemann.Performance Based Fault Diagnosis[C]// Proceedings of the American Control Conference,Anchorage:AK.2002. 被引量:1

共引文献43

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部