期刊文献+

基于多样本的在线支持向量回归算法 被引量:3

On-line support vector regression with multiple samples
下载PDF
导出
摘要 提出一种针对多样本的在线支持向量回归(SVR)算法,以解决目前SVR在线训练算法每次只能处理1个样本的问题.算法以拉格朗日乘数法和库恩-塔克(KKT)条件为基础,逐步改变样本的系数,并在每次迭代中保持原来的样本满足KKT条件,最终使所有训练样本满足KKT条件.实验表明,该方法可有效更新SVR模型,且计算效率相比于基于单样本的在线回归算法有较大的优势. An on-line support vector regression(SVR) algorithm with multiple samples algorithm is proposed in order to overcome the drawbacks of the previously proposed algorithm which can only deal with one training sample at a time.The algorithm is based on the Lagrangian multiplier method and the KKT conditions.At each step of iteration,the algorithm modifies the Lagrangian multipliers of the updated samples while making sure the KKT conditions are fulfilled for all other training samples.The on-line training algorithm terminates when all training samples fulfill the KKT conditions.Experimental result shows that the proposed algorithm can update the SVR model on-line effectively and it is much more efficient than the on-line training algorithm with single samples.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2011年第4期405-408,共4页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(60720106003)
关键词 支持向量回归 增量学习 在线训练 support vector regression (SVR) incremental learning on-line training
  • 相关文献

参考文献11

  • 1VAPNIK V N. Statistical Learning Theory[M]. New York: Wiley, 1998. 被引量:1
  • 2WANG H, SUN F, CAI Y, et al. Online chaotic time series prediction using unbiased composite kernel ma- chine via Cholesky factorization[J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2009,14(9):931-944. 被引量:1
  • 3WANG H, PI D, SUN Y. Online SVM regression al- gorithm-based adaptive inverse control[J]. Neurocom- puting, 2007,70(4- 6) : 952- 959. 被引量:1
  • 4WANG H, PI D, SUN Y. Weighted On-line SVM Re- gression Algorithm and its Application[M]. Berlin:Springer, 2005. 被引量:1
  • 5CAUWENBERGHS G, POGGIO T. Incremental and Decremental Support Vector Machine Learning [C]. NIPS, Cambridge, MA.. MIT Press,2000..409-415. 被引量:1
  • 6LASKOV P, GEHL C, KRUGER S, et al. Incremen- tal support vector learning: analysis, implementation and applications[J].J of Machine Learning Research, 2006,7:1909-1936. 被引量:1
  • 7DUAN H, SHAO X, HOU W, et al. An incremental learning algorithm for Lagrangian support vector ma- chines[J].Pattern Reeogn Lett, 2009,30 (15) : 1384 - 1391. 被引量:1
  • 8MA J, THEILER J, PERKINS S. Accurate on-line support vector regression[J]. Neural Computation, 2003,15(11) :2683-2703. 被引量:1
  • 9KARASUYAMA M, TAKEUCHI I, NAKANO R. Efficient leave-m-out cross-validation of support vector regression by generalizing decremental algorithm[J]. New Generation Computing, 2009,27(4) : 307- 318. 被引量:1
  • 10WANG W, YEUNG D-Y, LOCHOVSKY F H. A new solution path algorithm in support vector regres- sion [J]. IEEE Transactions on Neural Networks, 2008,19 (10) : 1753- 1767. 被引量:1

同被引文献24

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部