期刊文献+

基于回归型支持向量机的液压舵机故障诊断 被引量:18

Fault Diagnosis for Hydraulic Actuator Based on Support Vector Regression
下载PDF
导出
摘要 利用回归型支持向量机(Support Vector Regression,SVR),设计了一个液压舵机的故障诊断系统。利用系统的可测参量,建立了基于SVR的液压舵机的全局故障检测模型。在仿真过程中发现,此方法能对电液伺服阀、位移传感器和伺服放大器的各种故障进行诊断,诊断准确度高,适用于闭环控制系统的故障检测,仿真结果验证了该方法的有效性。 A fault diagnosis system was designed for hydraulic actuator by using support vector regression (SVR). The total fault diagnosis model of hydraulic actuator was established based on SVR by using the systemic parameters which could be measured, It is found that the method can be used to detect all kinds of faults of electro hydraulic servo valve, displacement sensor and servo amplifier accurately and quickly. The fault diagnosis method is fit for closed-loop control system. The simulation results show that the method mentioned above is valid.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第23期5509-5512,共4页 Journal of System Simulation
关键词 液压舵机 支持向量机 回归型支持向量机 故障诊断 hydraulic actuator Support Vector Machines Support Vector Regression fault diagnosis
  • 相关文献

参考文献8

二级参考文献20

  • 1翟永杰,尚雪莲,韩璞,王东风.SVR在传感器故障诊断中的仿真研究[J].系统仿真学报,2004,16(6):1257-1259. 被引量:24
  • 2杨国桢.飞机液压传动与控制[M].西安:空军工程学院出版社,1997.. 被引量:8
  • 3[1]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer,1999. 被引量:1
  • 4[2]Müller K R, Smola A J, Rats¨ch G, et al. Predicting timeserieswithsupport vector machines[A]. Proc ICANN′97[C]. New York: Springer,1997.999-1004. 被引量:1
  • 5[3]Drucker H, Burges C J, Kaufman L, et al. Support vector regression machines[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.155-161. 被引量:1
  • 6[4]Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.281-287. 被引量:1
  • 7[5]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. 5th Annual ACM Workshop COLT[C]. Pittsburgh: ACM Press,1992.144-152. 被引量:1
  • 8[6]Campbell C. Algorithmic approaches to training support vector machnies: A survey[A]. Proc ESANN′2000[C]. Belgium: D-Facto Publications,2000.27-36. 被引量:1
  • 9[7]Marsh L S, Albright L D. Economically optimum day temperature for greenhouse hydroponic lettuce production - Part 2: Results and simulations[J]. Trans ASAE,1991,34(3):557-562. 被引量:1
  • 10[8]Maksarov D, Chalabi Z S. Computing bounds on greenhouseenergyrequirementsusingboundederror approach[J]. Contr Eng Prac,1998,(6):947-995. 被引量:1

共引文献171

同被引文献113

引证文献18

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部