提出利用一种串、并行结合的方式将全局和局部面部特征进行集成:首先利用全局特征进行粗略的匹配,然后再将全局和局部特征集成起来进行精细的确认.在该方法中,全局和局部特征分别采用傅里叶变换和Gabor小波变换进行提取.两个大规模的人...提出利用一种串、并行结合的方式将全局和局部面部特征进行集成:首先利用全局特征进行粗略的匹配,然后再将全局和局部特征集成起来进行精细的确认.在该方法中,全局和局部特征分别采用傅里叶变换和Gabor小波变换进行提取.两个大规模的人脸库(FERET and FRGCv2.0)上的实验结果表明,此方法不仅可以显著提高系统的精度,而且可以提升系统的速度.展开更多
利用定位图像的局部特征进行移动机器人导航和定位是近年来该领域的研究热点。针对经典局部特征提取和描述算法实时性不好,提出一种快速局部特征(fast local feature,FLF)的检测子和描述子算法。利用离散尺寸的均值滤波器估算LOG算子构...利用定位图像的局部特征进行移动机器人导航和定位是近年来该领域的研究热点。针对经典局部特征提取和描述算法实时性不好,提出一种快速局部特征(fast local feature,FLF)的检测子和描述子算法。利用离散尺寸的均值滤波器估算LOG算子构建图像尺度空间,建立尺度和旋转不变的检测子。在尺度相关的邻域中利用规格化后的像素强度作为关联信息,建立局部邻域的描述子。模拟实验中,利用优选参数的FLF与经典SIFT算法对比,在识别率相当的条件下,FLF的运行时间是SIFT的1/3。在标准评估图片和移动机器人平台拍摄的定位图片构成的数据集下,FLF的匹配效果好于经典的SIFT和SURF算子。因而FLF是一种适合于实时应用的快速局部特征。展开更多
文摘提出利用一种串、并行结合的方式将全局和局部面部特征进行集成:首先利用全局特征进行粗略的匹配,然后再将全局和局部特征集成起来进行精细的确认.在该方法中,全局和局部特征分别采用傅里叶变换和Gabor小波变换进行提取.两个大规模的人脸库(FERET and FRGCv2.0)上的实验结果表明,此方法不仅可以显著提高系统的精度,而且可以提升系统的速度.
文摘利用定位图像的局部特征进行移动机器人导航和定位是近年来该领域的研究热点。针对经典局部特征提取和描述算法实时性不好,提出一种快速局部特征(fast local feature,FLF)的检测子和描述子算法。利用离散尺寸的均值滤波器估算LOG算子构建图像尺度空间,建立尺度和旋转不变的检测子。在尺度相关的邻域中利用规格化后的像素强度作为关联信息,建立局部邻域的描述子。模拟实验中,利用优选参数的FLF与经典SIFT算法对比,在识别率相当的条件下,FLF的运行时间是SIFT的1/3。在标准评估图片和移动机器人平台拍摄的定位图片构成的数据集下,FLF的匹配效果好于经典的SIFT和SURF算子。因而FLF是一种适合于实时应用的快速局部特征。